[Git][ghc/ghc][wip/andreask/elem_rule_fix] 38 commits: Add outputable instances for the types in GHC.Iface.Ext.Types, add -ddump-hie
Andreas Klebinger
gitlab at gitlab.haskell.org
Mon Apr 13 18:06:28 UTC 2020
Andreas Klebinger pushed to branch wip/andreask/elem_rule_fix at Glasgow Haskell Compiler / GHC
Commits:
ef7576c4 by Zubin Duggal at 2020-04-03T06:24:56-04:00
Add outputable instances for the types in GHC.Iface.Ext.Types, add -ddump-hie
flag to dump pretty printed contents of the .hie file
Metric Increase:
hie002
Because of the regression on i386:
compile_time/bytes allocated increased from i386-linux-deb9 baseline @ HEAD~10:
Expected hie002 (normal) compile_time/bytes allocated: 583014888.0 +/-10%
Lower bound hie002 (normal) compile_time/bytes allocated: 524713399
Upper bound hie002 (normal) compile_time/bytes allocated: 641316377
Actual hie002 (normal) compile_time/bytes allocated: 877986292
Deviation hie002 (normal) compile_time/bytes allocated: 50.6 %
*** unexpected stat test failure for hie002(normal)
- - - - -
9462452a by Andreas Klebinger at 2020-04-03T06:25:33-04:00
Improve and refactor StgToCmm codegen for DataCons.
We now differentiate three cases of constructor bindings:
1)Bindings which we can "replace" with a reference to
an existing closure. Reference the replacement closure
when accessing the binding.
2)Bindings which we can "replace" as above. But we still
generate a closure which will be referenced by modules
importing this binding.
3)For any other binding generate a closure. Then reference
it.
Before this patch 1) did only apply to local bindings and we
didn't do 2) at all.
- - - - -
a214d214 by Moritz Bruder at 2020-04-03T06:26:11-04:00
Add singleton to NonEmpty in libraries/base
This adds a definition to construct a singleton non-empty list
(Data.List.NonEmpty) according to issue #17851.
- - - - -
f7597aa0 by Sylvain Henry at 2020-04-03T06:26:54-04:00
Testsuite: measure compiler stats for T16190
We were mistakenly measuring program stats
- - - - -
a485c3c4 by Sylvain Henry at 2020-04-03T06:26:54-04:00
Move blob handling into StgToCmm
Move handling of big literal strings from CmmToAsm to StgToCmm. It
avoids the use of `sdocWithDynFlags` (cf #10143). We might need to move
this handling even higher in the pipeline in the future (cf #17960):
this patch will make it easier.
- - - - -
cc2918a0 by Sylvain Henry at 2020-04-03T06:26:54-04:00
Refactor CmmStatics
In !2959 we noticed that there was some redundant code (in GHC.Cmm.Utils
and GHC.Cmm.StgToCmm.Utils) used to deal with `CmmStatics` datatype
(before SRT generation) and `RawCmmStatics` datatype (after SRT
generation).
This patch removes this redundant code by using a single GADT for
(Raw)CmmStatics.
- - - - -
9e60273d by Maxim Koltsov at 2020-04-03T06:27:32-04:00
Fix haddock formatting in Control.Monad.ST.Lazy.Imp.hs
- - - - -
1b7e8a94 by Andreas Klebinger at 2020-04-03T06:28:08-04:00
Turn newlines into spaces for hadrian/ghci.
The newlines break the command on windows.
- - - - -
4291bdda by Simon Peyton Jones at 2020-04-03T06:28:44-04:00
Major improvements to the specialiser
This patch is joint work of Alexis King and Simon PJ. It does some
significant refactoring of the type-class specialiser. Main highlights:
* We can specialise functions with types like
f :: Eq a => a -> Ord b => b => blah
where the classes aren't all at the front (#16473). Here we can
correctly specialise 'f' based on a call like
f @Int @Bool dEqInt x dOrdBool
This change really happened in an earlier patch
commit 2d0cf6252957b8980d89481ecd0b79891da4b14b
Author: Sandy Maguire <sandy at sandymaguire.me>
Date: Thu May 16 12:12:10 2019 -0400
work that this new patch builds directly on that work, and refactors
it a bit.
* We can specialise functions with implicit parameters (#17930)
g :: (?foo :: Bool, Show a) => a -> String
Previously we could not, but now they behave just like a non-class
argument as in 'f' above.
* We can specialise under-saturated calls, where some (but not all of
the dictionary arguments are provided (#17966). For example, we can
specialise the above 'f' based on a call
map (f @Int dEqInt) xs
even though we don't (and can't) give Ord dictionary.
This may sound exotic, but #17966 is a program from the wild, and
showed significant perf loss for functions like f, if you need
saturation of all dictionaries.
* We fix a buglet in which a floated dictionary had a bogus demand
(#17810), by using zapIdDemandInfo in the NonRec case of specBind.
* A tiny side benefit: we can drop dead arguments to specialised
functions; see Note [Drop dead args from specialisations]
* Fixed a bug in deciding what dictionaries are "interesting"; see
Note [Keep the old dictionaries interesting]
This is all achieved by by building on Sandy Macguire's work in
defining SpecArg, which mkCallUDs uses to describe the arguments of
the call. Main changes:
* Main work is in specHeader, which marched down the [InBndr] from the
function definition and the [SpecArg] from the call site, together.
* specCalls no longer has an arity check; the entire mechanism now
handles unders-saturated calls fine.
* mkCallUDs decides on an argument-by-argument basis whether to
specialise a particular dictionary argument; this is new.
See mk_spec_arg in mkCallUDs.
It looks as if there are many more lines of code, but I think that
all the extra lines are comments!
- - - - -
40a85563 by Ömer Sinan Ağacan at 2020-04-03T18:26:19+03:00
Revert accidental change in 9462452
[ci skip]
- - - - -
bd75e5da by Ryan Scott at 2020-04-04T07:07:58-04:00
Enable ImpredicativeTypes internally when typechecking selector bindings
This is necessary for certain record selectors with higher-rank
types, such as the examples in #18005. See
`Note [Impredicative record selectors]` in `TcTyDecls`.
Fixes #18005.
- - - - -
dcfe29c8 by Ömer Sinan Ağacan at 2020-04-06T13:16:08-04:00
Don't override proc CafInfos in ticky builds
Fixes #17947
When we have a ticky label for a proc, IdLabels for the ticky counter
and proc entry share the same Name. This caused overriding proc CafInfos
with the ticky CafInfos (i.e. NoCafRefs) during SRT analysis.
We now ignore the ticky labels when building SRTMaps. This makes sense
because:
- When building the current module they don't need to be in SRTMaps as
they're initialized as non-CAFFY (see mkRednCountsLabel), so they
don't take part in the dependency analysis and they're never added to
SRTs.
(Reminder: a "dependency" in the SRT analysis is a CAFFY dependency,
non-CAFFY uses are not considered as dependencies for the algorithm)
- They don't appear in the interfaces as they're not exported, so it
doesn't matter for cross-module concerns whether they're in the SRTMap
or not.
See also the new Note [Ticky labels in SRT analysis].
- - - - -
cec2c71f by Simon Peyton Jones at 2020-04-06T13:16:44-04:00
Fix an tricky specialiser loop
Issue #17151 was a very tricky example of a bug in which the
specialiser accidentally constructs a recurive dictionary,
so that everything turns into bottom.
I have fixed variants of this bug at least twice before:
see Note [Avoiding loops]. It was a bit of a struggle
to isolate the problem, greatly aided by the work that
Alexey Kuleshevich did in distilling a test case.
Once I'd understood the problem, it was not difficult to fix,
though it did lead me a bit of refactoring in specImports.
- - - - -
e850d14f by Simon Peyton Jones at 2020-04-06T13:16:44-04:00
Refactoring only
This refactors DictBinds into a data type rather than a pair.
No change in behaviour, just better code
- - - - -
f38e8d61 by Daniel Gröber at 2020-04-07T02:00:05-04:00
rts: ProfHeap: Fix memory leak when not compiled with profiling
If we're doing heap profiling on an unprofiled executable we keep
allocating new space in initEra via nextEra on each profiler run but we
don't have a corresponding freeEra call.
We do free the last era in endHeapProfiling but previous eras will have
been overwritten by initEra and will never get free()ed.
Metric Decrease:
space_leak_001
- - - - -
bcd66859 by Sebastian Graf at 2020-04-07T02:00:41-04:00
Re-export GHC.Magic.noinline from base
- - - - -
3d2991f8 by Ben Gamari at 2020-04-07T18:36:09-04:00
simplifier: Kill off ufKeenessFactor
We used to have another factor, ufKeenessFactor, which would scale the
discounts before they were subtracted from the size. This was justified
with the following comment:
-- We multiple the raw discounts (args_discount and result_discount)
-- ty opt_UnfoldingKeenessFactor because the former have to do with
-- *size* whereas the discounts imply that there's some extra
-- *efficiency* to be gained (e.g. beta reductions, case reductions)
-- by inlining.
However, this is highly suspect since it means that we subtract a
*scaled* size from an absolute size, resulting in crazy (e.g. negative)
scores in some cases (#15304). We consequently killed off
ufKeenessFactor and bumped up the ufUseThreshold to compensate.
Adjustment of unfolding use threshold
=====================================
Since this removes a discount from our inlining heuristic, I revisited our
default choice of -funfolding-use-threshold to minimize the change in
overall inlining behavior. Specifically, I measured runtime allocations
and executable size of nofib and the testsuite performance tests built
using compilers (and core libraries) built with several values of
-funfolding-use-threshold.
This comes as a result of a quantitative comparison of testsuite
performance and code size as a function of ufUseThreshold, comparing
GHC trees using values of 50, 60, 70, 80, 90, and 100. The test set
consisted of nofib and the testsuite performance tests.
A full summary of these measurements are found in the description of
!2608
Comparing executable sizes (relative to the base commit) across all
nofib tests, we see that sizes are similar to the baseline:
gmean min max median
thresh
50 -6.36% -7.04% -4.82% -6.46%
60 -5.04% -5.97% -3.83% -5.11%
70 -2.90% -3.84% -2.31% -2.92%
80 -0.75% -2.16% -0.42% -0.73%
90 +0.24% -0.41% +0.55% +0.26%
100 +1.36% +0.80% +1.64% +1.37%
baseline +0.00% +0.00% +0.00% +0.00%
Likewise, looking at runtime allocations we see that 80 gives slightly
better optimisation than the baseline:
gmean min max median
thresh
50 +0.16% -0.16% +4.43% +0.00%
60 +0.09% -0.00% +3.10% +0.00%
70 +0.04% -0.09% +2.29% +0.00%
80 +0.02% -1.17% +2.29% +0.00%
90 -0.02% -2.59% +1.86% +0.00%
100 +0.00% -2.59% +7.51% -0.00%
baseline +0.00% +0.00% +0.00% +0.00%
Finally, I had to add a NOINLINE in T4306 to ensure that `upd` is
worker-wrappered as the test expects. This makes me wonder whether the
inlining heuristic is now too liberal as `upd` is quite a large
function. The same measure was taken in T12600.
Wall clock time compiling Cabal with -O0
thresh 50 60 70 80 90 100 baseline
build-Cabal 93.88 89.58 92.59 90.09 100.26 94.81 89.13
Also, this change happens to avoid the spurious test output in
`plugin-recomp-change` and `plugin-recomp-change-prof` (see #17308).
Metric Decrease:
hie002
T12234
T13035
T13719
T14683
T4801
T5631
T5642
T9020
T9872d
T9961
Metric Increase:
T12150
T12425
T13701
T14697
T15426
T1969
T3064
T5837
T6048
T9203
T9872a
T9872b
T9872c
T9872d
haddock.Cabal
haddock.base
haddock.compiler
- - - - -
255418da by Sylvain Henry at 2020-04-07T18:36:49-04:00
Modules: type-checker (#13009)
Update Haddock submodule
- - - - -
04b6cf94 by Ryan Scott at 2020-04-07T19:43:20-04:00
Make NoExtCon fields strict
This changes every unused TTG extension constructor to be strict in
its field so that the pattern-match coverage checker is smart enough
any such constructors are unreachable in pattern matches. This lets
us remove nearly every use of `noExtCon` in the GHC API. The only
ones we cannot remove are ones underneath uses of `ghcPass`, but that
is only because GHC 8.8's and 8.10's coverage checkers weren't smart
enough to perform this kind of reasoning. GHC HEAD's coverage
checker, on the other hand, _is_ smart enough, so we guard these uses
of `noExtCon` with CPP for now.
Bumps the `haddock` submodule.
Fixes #17992.
- - - - -
7802fa17 by Ryan Scott at 2020-04-08T16:43:44-04:00
Handle promoted data constructors in typeToLHsType correctly
Instead of using `nlHsTyVar`, which hardcodes `NotPromoted`, have
`typeToLHsType` pick between `Promoted` and `NotPromoted` by checking
if a type constructor is promoted using `isPromotedDataCon`.
Fixes #18020.
- - - - -
ce481361 by Ben Gamari at 2020-04-09T16:17:21-04:00
hadrian: Use --export-dynamic when linking iserv
As noticed in #17962, the make build system currently does this (see
3ce0e0ba) but the change was never ported to Hadrian.
- - - - -
fa66f143 by Ben Gamari at 2020-04-09T16:17:21-04:00
iserv: Don't pass --export-dynamic on FreeBSD
This is definitely a hack but it's probably the best we can do for now.
Hadrian does the right thing here by passing --export-dynamic only to
the linker.
- - - - -
39075176 by Ömer Sinan Ağacan at 2020-04-09T16:18:00-04:00
Fix CNF handling in compacting GC
Fixes #17937
Previously compacting GC simply ignored CNFs. This is mostly fine as
most (see "What about small compacts?" below) CNF objects don't have
outgoing pointers, and are "large" (allocated in large blocks) and large
objects are not moved or compacted.
However if we do GC *during* sharing-preserving compaction then the CNF
will have a hash table mapping objects that have been moved to the CNF
to their location in the CNF, to be able to preserve sharing.
This case is handled in the copying collector, in `scavenge_compact`,
where we evacuate hash table entries and then rehash the table.
Compacting GC ignored this case.
We now visit CNFs in all generations when threading pointers to the
compacted heap and thread hash table keys. A visited CNF is added to the
list `nfdata_chain`. After compaction is done, we re-visit the CNFs in
that list and rehash the tables.
The overhead is minimal: the list is static in `Compact.c`, and link
field is added to `StgCompactNFData` closure. Programs that don't use
CNFs should not be affected.
To test this CNF tests are now also run in a new way 'compacting_gc',
which just passes `-c` to the RTS, enabling compacting GC for the oldest
generation. Before this patch the result would be:
Unexpected failures:
compact_gc.run compact_gc [bad exit code (139)] (compacting_gc)
compact_huge_array.run compact_huge_array [bad exit code (1)] (compacting_gc)
With this patch all tests pass. I can also pass `-c -DS` without any
failures.
What about small compacts? Small CNFs are still not handled by the
compacting GC. However so far I'm unable to write a test that triggers a
runtime panic ("update_fwd: unknown/strange object") by allocating a
small CNF in a compated heap. It's possible that I'm missing something
and it's not possible to have a small CNF.
NoFib Results:
--------------------------------------------------------------------------------
Program Size Allocs Instrs Reads Writes
--------------------------------------------------------------------------------
CS +0.1% 0.0% 0.0% +0.0% +0.0%
CSD +0.1% 0.0% 0.0% 0.0% 0.0%
FS +0.1% 0.0% 0.0% 0.0% 0.0%
S +0.1% 0.0% 0.0% 0.0% 0.0%
VS +0.1% 0.0% 0.0% 0.0% 0.0%
VSD +0.1% 0.0% +0.0% +0.0% -0.0%
VSM +0.1% 0.0% +0.0% -0.0% 0.0%
anna +0.0% 0.0% -0.0% -0.0% -0.0%
ansi +0.1% 0.0% +0.0% +0.0% +0.0%
atom +0.1% 0.0% +0.0% +0.0% +0.0%
awards +0.1% 0.0% +0.0% +0.0% +0.0%
banner +0.1% 0.0% +0.0% +0.0% +0.0%
bernouilli +0.1% 0.0% 0.0% -0.0% +0.0%
binary-trees +0.1% 0.0% -0.0% -0.0% 0.0%
boyer +0.1% 0.0% +0.0% +0.0% +0.0%
boyer2 +0.1% 0.0% +0.0% +0.0% +0.0%
bspt +0.1% 0.0% -0.0% -0.0% -0.0%
cacheprof +0.1% 0.0% -0.0% -0.0% -0.0%
calendar +0.1% 0.0% +0.0% +0.0% +0.0%
cichelli +0.1% 0.0% +0.0% +0.0% +0.0%
circsim +0.1% 0.0% +0.0% +0.0% +0.0%
clausify +0.1% 0.0% -0.0% +0.0% +0.0%
comp_lab_zift +0.1% 0.0% +0.0% +0.0% +0.0%
compress +0.1% 0.0% +0.0% +0.0% 0.0%
compress2 +0.1% 0.0% -0.0% 0.0% 0.0%
constraints +0.1% 0.0% +0.0% +0.0% +0.0%
cryptarithm1 +0.1% 0.0% +0.0% +0.0% +0.0%
cryptarithm2 +0.1% 0.0% +0.0% +0.0% +0.0%
cse +0.1% 0.0% +0.0% +0.0% +0.0%
digits-of-e1 +0.1% 0.0% +0.0% -0.0% -0.0%
digits-of-e2 +0.1% 0.0% -0.0% -0.0% -0.0%
dom-lt +0.1% 0.0% +0.0% +0.0% +0.0%
eliza +0.1% 0.0% +0.0% +0.0% +0.0%
event +0.1% 0.0% +0.0% +0.0% +0.0%
exact-reals +0.1% 0.0% +0.0% +0.0% +0.0%
exp3_8 +0.1% 0.0% +0.0% -0.0% 0.0%
expert +0.1% 0.0% +0.0% +0.0% +0.0%
fannkuch-redux +0.1% 0.0% -0.0% 0.0% 0.0%
fasta +0.1% 0.0% -0.0% +0.0% +0.0%
fem +0.1% 0.0% -0.0% +0.0% 0.0%
fft +0.1% 0.0% -0.0% +0.0% +0.0%
fft2 +0.1% 0.0% +0.0% +0.0% +0.0%
fibheaps +0.1% 0.0% +0.0% +0.0% +0.0%
fish +0.1% 0.0% +0.0% +0.0% +0.0%
fluid +0.0% 0.0% +0.0% +0.0% +0.0%
fulsom +0.1% 0.0% -0.0% +0.0% 0.0%
gamteb +0.1% 0.0% +0.0% +0.0% 0.0%
gcd +0.1% 0.0% +0.0% +0.0% +0.0%
gen_regexps +0.1% 0.0% -0.0% +0.0% 0.0%
genfft +0.1% 0.0% +0.0% +0.0% +0.0%
gg +0.1% 0.0% 0.0% +0.0% +0.0%
grep +0.1% 0.0% -0.0% +0.0% +0.0%
hidden +0.1% 0.0% +0.0% -0.0% 0.0%
hpg +0.1% 0.0% -0.0% -0.0% -0.0%
ida +0.1% 0.0% +0.0% +0.0% +0.0%
infer +0.1% 0.0% +0.0% 0.0% -0.0%
integer +0.1% 0.0% +0.0% +0.0% +0.0%
integrate +0.1% 0.0% -0.0% -0.0% -0.0%
k-nucleotide +0.1% 0.0% +0.0% +0.0% 0.0%
kahan +0.1% 0.0% +0.0% +0.0% +0.0%
knights +0.1% 0.0% -0.0% -0.0% -0.0%
lambda +0.1% 0.0% +0.0% +0.0% -0.0%
last-piece +0.1% 0.0% +0.0% 0.0% 0.0%
lcss +0.1% 0.0% +0.0% +0.0% 0.0%
life +0.1% 0.0% -0.0% +0.0% +0.0%
lift +0.1% 0.0% +0.0% +0.0% +0.0%
linear +0.1% 0.0% -0.0% +0.0% 0.0%
listcompr +0.1% 0.0% +0.0% +0.0% +0.0%
listcopy +0.1% 0.0% +0.0% +0.0% +0.0%
maillist +0.1% 0.0% +0.0% -0.0% -0.0%
mandel +0.1% 0.0% +0.0% +0.0% 0.0%
mandel2 +0.1% 0.0% +0.0% +0.0% +0.0%
mate +0.1% 0.0% +0.0% 0.0% +0.0%
minimax +0.1% 0.0% -0.0% 0.0% -0.0%
mkhprog +0.1% 0.0% +0.0% +0.0% +0.0%
multiplier +0.1% 0.0% +0.0% 0.0% 0.0%
n-body +0.1% 0.0% +0.0% +0.0% +0.0%
nucleic2 +0.1% 0.0% +0.0% +0.0% +0.0%
para +0.1% 0.0% 0.0% +0.0% +0.0%
paraffins +0.1% 0.0% +0.0% -0.0% 0.0%
parser +0.1% 0.0% -0.0% -0.0% -0.0%
parstof +0.1% 0.0% +0.0% +0.0% +0.0%
pic +0.1% 0.0% -0.0% -0.0% 0.0%
pidigits +0.1% 0.0% +0.0% -0.0% -0.0%
power +0.1% 0.0% +0.0% +0.0% +0.0%
pretty +0.1% 0.0% -0.0% -0.0% -0.1%
primes +0.1% 0.0% -0.0% -0.0% -0.0%
primetest +0.1% 0.0% -0.0% -0.0% -0.0%
prolog +0.1% 0.0% -0.0% -0.0% -0.0%
puzzle +0.1% 0.0% -0.0% -0.0% -0.0%
queens +0.1% 0.0% +0.0% +0.0% +0.0%
reptile +0.1% 0.0% -0.0% -0.0% +0.0%
reverse-complem +0.1% 0.0% +0.0% 0.0% -0.0%
rewrite +0.1% 0.0% -0.0% -0.0% -0.0%
rfib +0.1% 0.0% +0.0% +0.0% +0.0%
rsa +0.1% 0.0% -0.0% +0.0% -0.0%
scc +0.1% 0.0% -0.0% -0.0% -0.1%
sched +0.1% 0.0% +0.0% +0.0% +0.0%
scs +0.1% 0.0% +0.0% +0.0% +0.0%
simple +0.1% 0.0% -0.0% -0.0% -0.0%
solid +0.1% 0.0% +0.0% +0.0% +0.0%
sorting +0.1% 0.0% -0.0% -0.0% -0.0%
spectral-norm +0.1% 0.0% +0.0% +0.0% +0.0%
sphere +0.1% 0.0% -0.0% -0.0% -0.0%
symalg +0.1% 0.0% -0.0% -0.0% -0.0%
tak +0.1% 0.0% +0.0% +0.0% +0.0%
transform +0.1% 0.0% +0.0% +0.0% +0.0%
treejoin +0.1% 0.0% +0.0% -0.0% -0.0%
typecheck +0.1% 0.0% +0.0% +0.0% +0.0%
veritas +0.0% 0.0% +0.0% +0.0% +0.0%
wang +0.1% 0.0% 0.0% +0.0% +0.0%
wave4main +0.1% 0.0% +0.0% +0.0% +0.0%
wheel-sieve1 +0.1% 0.0% +0.0% +0.0% +0.0%
wheel-sieve2 +0.1% 0.0% +0.0% +0.0% +0.0%
x2n1 +0.1% 0.0% +0.0% +0.0% +0.0%
--------------------------------------------------------------------------------
Min +0.0% 0.0% -0.0% -0.0% -0.1%
Max +0.1% 0.0% +0.0% +0.0% +0.0%
Geometric Mean +0.1% -0.0% -0.0% -0.0% -0.0%
Bumping numbers of nonsensical perf tests:
Metric Increase:
T12150
T12234
T12425
T13035
T5837
T6048
It's simply not possible for this patch to increase allocations, and
I've wasted enough time on these test in the past (see #17686). I think
these tests should not be perf tests, but for now I'll bump the numbers.
- - - - -
dce50062 by Sylvain Henry at 2020-04-09T16:18:44-04:00
Rts: show errno on failure (#18033)
- - - - -
045139f4 by Hécate at 2020-04-09T23:10:44-04:00
Add an example to liftIO and explain its purpose
- - - - -
101fab6e by Sebastian Graf at 2020-04-09T23:11:21-04:00
Special case `isConstraintKindCon` on `AlgTyCon`
Previously, the `tyConUnique` record selector would unfold into a huge
case expression that would be inlined in all call sites, such as the
`INLINE`-annotated `coreView`, see #18026. `constraintKindTyConKey` only
occurs as the `Unique` of an `AlgTyCon` anyway, so we can make the code
a lot more compact, but have to move it to GHC.Core.TyCon.
Metric Decrease:
T12150
T12234
- - - - -
f5212dfc by Sebastian Graf at 2020-04-09T23:11:57-04:00
DmdAnal: No need to attach a StrictSig to DataCon workers
In GHC.Types.Id.Make we were giving a strictness signature to every data
constructor wrapper Id that we weren't looking at in demand analysis
anyway. We used to use its CPR info, but that has its own CPR signature
now.
`Note [Data-con worker strictness]` then felt very out of place, so I
moved it to GHC.Core.DataCon.
- - - - -
75a185dc by Sylvain Henry at 2020-04-09T23:12:37-04:00
Hadrian: fix --summary
- - - - -
723062ed by Ömer Sinan Ağacan at 2020-04-10T09:18:14+03:00
testsuite: Move no_lint to the top level, tweak hie002
- We don't want to benchmark linting so disable lints in hie002 perf
test
- Move no_lint to the top-level to be able to use it in tests other than
those in `testsuite/tests/perf/compiler`.
- Filter out -dstg-lint in no_lint.
- hie002 allocation numbers on 32-bit are unstable, so skip it on 32-bit
Metric Decrease:
hie002
ManyConstructors
T12150
T12234
T13035
T1969
T4801
T9233
T9961
- - - - -
bcafaa82 by Peter Trommler at 2020-04-10T19:29:33-04:00
Testsuite: mark T11531 fragile
The test depends on a link editor allowing undefined symbols in an ELF
shared object. This is the standard but it seems some distributions
patch their link editor. See the report by @hsyl20 in #11531.
Fixes #11531
- - - - -
0889f5ee by Takenobu Tani at 2020-04-12T11:44:52+09:00
testsuite: Fix comment for a language extension
[skip ci]
- - - - -
cd4f92b5 by Simon Peyton Jones at 2020-04-12T11:20:58-04:00
Significant refactor of Lint
This refactoring of Lint was triggered by #17923, which is
fixed by this patch.
The main change is this. Instead of
lintType :: Type -> LintM LintedKind
we now have
lintType :: Type -> LintM LintedType
Previously, all of typeKind was effectively duplicate in lintType.
Moreover, since we have an ambient substitution, we still had to
apply the substition here and there, sometimes more than once. It
was all very tricky, in the end, and made my head hurt.
Now, lintType returns a fully linted type, with all substitutions
performed on it. This is much simpler.
The same thing is needed for Coercions. Instead of
lintCoercion :: OutCoercion
-> LintM (LintedKind, LintedKind,
LintedType, LintedType, Role)
we now have
lintCoercion :: Coercion -> LintM LintedCoercion
Much simpler! The code is shorter and less bug-prone.
There are a lot of knock on effects. But life is now better.
Metric Decrease:
T1969
- - - - -
0efaf301 by Josh Meredith at 2020-04-12T11:21:34-04:00
Implement extensible interface files
- - - - -
54ca66a7 by Ryan Scott at 2020-04-12T11:22:10-04:00
Use conLikeUserTyVarBinders to quantify field selector types
This patch:
1. Writes up a specification for how the types of top-level field
selectors should be determined in a new section of the GHC User's
Guide, and
2. Makes GHC actually implement that specification by using
`conLikeUserTyVarBinders` in `mkOneRecordSelector` to preserve the
order and specificity of type variables written by the user.
Fixes #18023.
- - - - -
35799dda by Ben Gamari at 2020-04-12T11:22:50-04:00
hadrian: Don't --export-dynamic on Darwin
When fixing #17962 I neglected to consider that --export-dynamic is only
supported on ELF platforms.
- - - - -
e8029816 by Alexis King at 2020-04-12T11:23:27-04:00
Add an INLINE pragma to Control.Category.>>>
This fixes #18013 by adding INLINE pragmas to both Control.Category.>>>
and GHC.Desugar.>>>. The functional change in this patch is tiny (just
two lines of pragmas!), but an accompanying Note explains in gory
detail what’s going on.
- - - - -
ec44e160 by Andreas Klebinger at 2020-04-13T15:54:53+02:00
Rework treatment of `elem`. Add UTF8 GHC.CString functions.
A fusion RULE for elem was broken preventing it from firing.
Fixing this allows a call to elem on a known list to be translated
into a series of equality checks, and eventually a simple case
expression.
This now also works for unboxed string literals via a builtin rule.
As a byproduct GHC.CString functionality is now available for Ascii
and UTF8 strings. The following missing UTF8 variants were
added: unpackAppendCStringUtf8#, unpackFoldrCStringUtf8#
They work just like their ascii counterparts. Which hopefully
makes proper UTF8 support easier for library authors and was
required to support this transformation for utf8 encoded
unboxed strings.
- - - - -
e0c0b917 by Andreas Klebinger at 2020-04-13T15:54:55+02:00
Update comments/notes
- - - - -
30 changed files:
- CODEOWNERS
- compiler/GHC.hs
- compiler/GHC/Cmm.hs
- compiler/GHC/Cmm/CLabel.hs
- compiler/GHC/Cmm/DebugBlock.hs
- compiler/GHC/Cmm/Expr.hs
- compiler/GHC/Cmm/Info.hs
- compiler/GHC/Cmm/Info/Build.hs
- compiler/GHC/Cmm/Node.hs
- compiler/GHC/Cmm/Parser.y
- compiler/GHC/Cmm/Ppr/Decl.hs
- compiler/GHC/Cmm/Utils.hs
- compiler/GHC/CmmToAsm/PPC/CodeGen.hs
- compiler/GHC/CmmToAsm/PPC/Ppr.hs
- compiler/GHC/CmmToAsm/PPC/RegInfo.hs
- compiler/GHC/CmmToAsm/Ppr.hs
- compiler/GHC/CmmToAsm/SPARC/CodeGen.hs
- compiler/GHC/CmmToAsm/SPARC/CodeGen/Gen32.hs
- compiler/GHC/CmmToAsm/SPARC/Ppr.hs
- compiler/GHC/CmmToAsm/SPARC/ShortcutJump.hs
- compiler/GHC/CmmToAsm/X86/CodeGen.hs
- compiler/GHC/CmmToAsm/X86/Instr.hs
- compiler/GHC/CmmToAsm/X86/Ppr.hs
- compiler/GHC/CmmToC.hs
- compiler/GHC/CmmToLlvm.hs
- compiler/GHC/CmmToLlvm/Data.hs
- compiler/GHC/CmmToLlvm/Ppr.hs
- compiler/GHC/Core.hs
- compiler/GHC/Core/Arity.hs
- compiler/GHC/Core/Class.hs
The diff was not included because it is too large.
View it on GitLab: https://gitlab.haskell.org/ghc/ghc/-/compare/15ca17aa375a9460c95d31151c8ca0388b8f037b...e0c0b91715667bbd0b3305d2424f4edd6e5000a0
--
View it on GitLab: https://gitlab.haskell.org/ghc/ghc/-/compare/15ca17aa375a9460c95d31151c8ca0388b8f037b...e0c0b91715667bbd0b3305d2424f4edd6e5000a0
You're receiving this email because of your account on gitlab.haskell.org.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.haskell.org/pipermail/ghc-commits/attachments/20200413/50281251/attachment-0001.html>
More information about the ghc-commits
mailing list