Generalize indexing function
Keith
keith.wygant at gmail.com
Sat Apr 10 22:57:21 UTC 2021
Might be more convenient to use an associated type family. And in practice, using types like '()' and 'Bool' as indexes is not super useful when you've already committed to using 'Int' as the (partial) index type of '[]'.
- Keith
Sent from my phone with K-9 Mail.
On April 10, 2021 10:48:42 PM UTC, Dannyu NDos <ndospark320 at gmail.com> wrote:
>I noticed that the list indexing function, (!!), is generalizable. I'm
>showing some instances:
>
>{-# LANGUAGE MultiParamTypeClasses #-}
>
>import Data.Complex
>import Data.Functor.Compose
>import Data.Functor.Product
>import Data.Functor.Sum
>import Data.List.NonEmpty
>import Data.Maybe
>
>infix 9 !?
>infixl 9 !
>
>class Indexable i a where
> (!?) :: i b -> a -> Maybe b
>
>(!) :: Indexable i a => i b -> a -> b
>x ! n = fromJust (x !? n)
>
>instance Indexable [] Int where
> [] !? _ = Nothing
> (x:_) !? 0 = Just x
> (_:xs) !? n
> | n < 0 = Nothing
> | otherwise = xs !? (n-1)
>
>instance Indexable ((->) a) (Identity a) where
> f !? Identity n = Just (f n)
>
>instance Indexable ((,) a) () where
> (_,x) !? _ = Just x
>
>instance Indexable Complex Bool where
> (x :+ _) !? False = Just x
> (_ :+ y) !? True = Just y
>
>instance (Indexable f a, Indexable g b) => Indexable (Compose f g) (a,b)
>where
> Compose z !? (m,n) = do
> y <- z !? m
> y !? n
>
>instance (Indexable f a, Indexable g b) => Indexable (Product f g) (Either
>a b) where
> Pair x _ !? Left m = x !? m
> Pair _ y !? Right n = y !? n
>
>instance (Indexable f a, Indexable g a) => Indexable (Sum f g) (Identity a)
>where
> InL x !? Identity n = x !? n
> InR y !? Identity n = y !? n
>
>instance Indexable NonEmpty Int where
> (x :| xs) !? n = (x : xs) !? n
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.haskell.org/pipermail/libraries/attachments/20210410/00cac7b2/attachment.html>
More information about the Libraries
mailing list