[Haskell-fr] Re: inférence
Dupont Corentin
corentin.dupont at gmail.com
Mon Sep 10 11:01:41 EDT 2007
J'ai tranformé mon programme de la manière suivante (voir ci-après).
J'ai spécifié le type de la plupart des fonctions.
Ca marche mieux, mais l'écriture est sérieusement plus lourde!
J'ai encore un problème:
courbe = defaultPlotLines {
plot_lines_values = [[ (Point a b) | (a,b) <- ps]],
plot_lines_style = solidLine lineWidth 0 0 1
}
donne l'erreur:
Couldn't match expected type `Double' against inferred type `Float'
In the first argument of `Point', namely `a'
In the expression: (Point a b)
In the expression: [(Point a b) | (a, b) <- ps]
en effet Point prend des doubles. Je n'ai pas trouvé de fonctions de
conversion Float vers Double...
Merci!
Corentin
*module Lagrange where*
*nombre_points :: Integer
nombre_points = 7*
*-- creation d'une liste exluant i
list :: Integer -> [Integer]
list i = filter (/=i) [0..nombre_points-1] *
*-- un terme du polynôme de Lagrange
--un_terme :: Float -> Integer -> Integer -> Float
un_terme t j i = (t - i_f)/(j_f - i_f)
where i_f = fromInteger i
j_f = fromInteger j*
*--produit des termes pour obtenir le polynôme d'un point
les_termes t j = map (un_terme t j) (list j)
poly t j = product (les_termes t j)*
* *
*--blend (a,t) = a(0) * (poly t 0) + a(1) * (poly t 1) + a(2) * (poly t 2) +
a(3) * (poly t 3) +
-- a(4) * (poly t 4) + a(5) * (poly t 5) + a(6) * (poly t 6)*
*--t est le paramètre du polynôme, a sera la coordonnée (x ou y).
blend_un_point :: Float -> (Integer -> Float) -> Integer -> Float
blend_un_point t a numero_point = a(numero_point) * (poly t numero_point)
blend_les_points t a = map (blend_un_point t a) [0..6]*
*blend :: (Integer -> Float, Float) -> Float
blend (a,t) = sum (blend_les_points t a)*
*-- Sample points
xy = [(-4.0,0.0), (-1.0,1.0), (-3.0,3.0), (0.0,4.0), (3.0,3.0),(1.0,1.0),(
4.0,0.0)]*
*--creation des fonctions x et y
x :: Integer -> Float
x pos = fst (xy !! pos_Integer)
where pos_Integer = fromInteger(pos)
y :: Integer -> Float
y pos = snd (xy !! pos_Integer)
where pos_Integer = fromInteger(pos)*
*-- Blend the sample points for some given u:
bx :: Float -> Float
bx(u) = blend(x,u)*
*by :: Float -> Float
by(u) = blend(y,u)*
*-- Take m+1 values for u, from 0 to nombre_points, equally spaced:
us :: Integer -> [Float]
us m = map (/mf) [0..6*mf]
where mf = fromInteger m*
*-- For*
*m = 50*
*-- we get us(m)=[0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0].*
*-- Now get a list of points for the above values of the parameter:*
*xs = map bx (us(m))
ys = map by (us(m))*
*-- Running this, we get, where I've rounded the results to 2 digits:
--
-- xs = [0.00, 0.38, 0.75, 1.1, 1.5, 1.9, 2.3, 2.6, 3.0]
-- ys = [0.00, 0.46, 1.00, 1.7, 2.3, 2.8, 3.1, 3.2, 3.0]*
*-- Finally, get a list of pairs (x,y), i.e. a list of points:*
*ps = zip xs ys*
*-- In this example, running "ps" we get, after rounding, the points:
--
-- [(0, 0), (0.38, 0.46), (0.75, 1), (1.1, 1.7),
-- (1.5, 2.3), (1.9, 2.8), (2.3, 3.1), (2.6, 3.2), (3, 3)]
--
-- Now plot lines joining these points to get an approximation of the curve
*
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://www.haskell.org/pipermail/haskell-fr/attachments/20070910/a44a8fc7/attachment.htm
More information about the Haskell-fr
mailing list