[Haskell-cafe] Optimizing Fold Expressions

Roman Cheplyaka roma at ro-che.info
Sat Mar 30 20:36:39 CET 2013


The solution to this problem is called "scrap your boilerplate".
There are a few libraries that implement it, in different variations.

Let me show you how to do it using my library, 'traverse-with-class'.
You'll need install it and the 'tagged' package to run this example.

  {-# LANGUAGE TemplateHaskell, ImplicitParams, OverlappingInstances,
      MultiParamTypeClasses, ConstraintKinds, UndecidableInstances #-}

  import Data.Generics.Traversable
  import Data.Generics.Traversable.TH
  import Data.Proxy

  data Expr = Add Expr Expr
            | Sub Expr Expr
            | Mul Expr Expr
            | Eq  Expr Expr
            | B Bool
            | I Int
            deriving Show

  -- derive a GTraversable instance for our type
  deriveGTraversable ''Expr

  -- class to perform our operation
  class IntToBool a where
    intToBool :: a -> a

  -- case for expressions: no recursion, we care only about the one level.
  -- The "everywhere" function will do recursion for us.
  instance IntToBool Expr where
    intToBool (I x) = B $ if x == 0 then False else True
    intToBool e = e -- default case for non-I constructors

  -- default case for non-expression types (such as Int): do nothing
  instance IntToBool a where
    intToBool = id

  -- the final implementation
  replaceIntByBool :: Expr -> Expr
  replaceIntByBool =
    let ?c = Proxy :: Proxy IntToBool in
    everywhere intToBool

Roman

* J. J. W. <bsc.j.j.w at gmail.com> [2013-03-30 19:45:35+0100]
> Dear all,
> 
> I was wondering whether it was possible to write fold expressions more
> elegantly. Suppose I have the following
> datastructure:
> 
> data Expr = Add Expr Expr
>           | Sub Expr Expr
>           | Mul Expr Expr
>           | Eq  Expr Expr
>           | B Bool
>           | I Int
>           deriving Show
> 
> type ExprAlgebra r = (r -> r -> r, -- Add
>                       r -> r -> r, -- Sub
>                       r -> r -> r, -- Mul
>                       r -> r -> r, -- Eq
>                       Bool   -> r, -- Bool
>                       Int -> r     -- Int
>                       )
> 
> foldAlgebra :: ExprAlgebra r -> Expr -> r
> foldAlgebra alg@(a, b, c ,d, e, f) (Add x y) = a (foldAlgebra alg x)
> (foldAlgebra alg y)
> foldAlgebra alg@(a, b, c ,d, e, f) (Sub x y) = b (foldAlgebra alg x)
> (foldAlgebra alg y)
> foldAlgebra alg@(a, b, c ,d, e, f) (Mul x y) = c (foldAlgebra alg x)
> (foldAlgebra alg y)
> foldAlgebra alg@(a, b, c ,d, e, f) (Eq  x y) = d (foldAlgebra alg x)
> (foldAlgebra alg y)
> foldAlgebra alg@(a, b, c ,d, e, f) (B b')    = e b'
> foldAlgebra alg@(a, b, c ,d, e, f) (I i)     = f i
> 
> If I am correct, this works, however if we for example would like to
> replace all Int's by booleans (note: this is to illustrate my problem):
> 
> replaceIntByBool = foldAlgebra (Add, Sub, Mul, Eq, B, \x -> if x == 0 then
> B False else B True)
> 
> As you can see, a lot of "useless" identity code. Can I somehow optimize
> this? Can someone give me some pointers how I can write this more clearly
> (or with less code?) So I constantly don't have to write Add, Sub, Mul, for
> those things that I just want an "identity function"?
> 
> Thanks in advance!
> 
> Jun Jie

> _______________________________________________
> Haskell-Cafe mailing list
> Haskell-Cafe at haskell.org
> http://www.haskell.org/mailman/listinfo/haskell-cafe




More information about the Haskell-Cafe mailing list