[Haskell-cafe] Have you seen this functor/contrafunctor combo?
Sjoerd Visscher
sjoerd at w3future.com
Thu Jun 7 23:29:56 CEST 2012
On Jun 7, 2012, at 5:21 PM, Conal Elliott wrote:
> Oh, yeah. Thanks, Sjoerd.
>
> I wonder if there's some way not to require Monad. Some sort of ApplicativeFix instead. Hm.
Something like this:
> instance (Contravariant p, ApplicativeFix f) => Applicative (Q' p f) where
> pure a = Q' (pure (pure a))
> Q' fs <*> Q' as = Q' $ \r -> uncurry ($) <$> afix (\ ~(f, a) -> (,) <$> fs (contramap ($ a) r) <*> as (contramap (f $) r))
This works with this ApplicativeFix class:
> class Applicative f => ApplicativeFix f where
> afix :: (a -> f a) -> f a
At first I thought there would be no instance for this that would not also be a monad. But actually the list instance for MonadFix looks more like an instance for ZipList:
> mfix (\x -> [1:1:zipWith (+) x (tail x), 1:zipWith (+) x x])
gives [[1,1,2,3,5,8…], [1,2,4,8,16,32,64…]], and mfix (\x -> [f x, g x, h x]) = [fix f, fix g, fix h]. For a list monad instance I would expect results with a mixture of f, g and h (but that would not be productive).
Btw, you've asked this before and you got an interesting response:
http://haskell.1045720.n5.nabble.com/recursive-programming-in-applicative-functors-td3171239.html
--
Sjoerd Visscher
https://github.com/sjoerdvisscher/blog
More information about the Haskell-Cafe
mailing list