No subject
Thu Jul 5 12:38:43 CEST 2012
<br>
=C2=A0 =C2=A0 Given<br>
=C2=A0 =C2=A0 =C2=A0 =C2=A0 F, a functor<br>
=C2=A0 =C2=A0 =C2=A0 =C2=A0 G, a functor<br>
=C2=A0 =C2=A0 =C2=A0 =C2=A0 e, a natural transformation from F to G<br>
=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 (i.e., e :: forall a. F a -> G=
a)<br>
=C2=A0 =C2=A0 =C2=A0 =C2=A0 g, a G-algebra<br>
=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 (i.e., f :: G X -> X, for some=
fixed X)<br>
<br>
=C2=A0 =C2=A0 it follows that<br>
<br>
=C2=A0 =C2=A0 =C2=A0 =C2=A0 cata g . cata (In . e) =3D cata (g . e)<br>
<br>
The proof of which is easy. So it's sufficient to be a catamorphism if =
your f =3D In . e for some e. I don't recall off-hand whether that'=
s necessary, though it seems likely<span><font color=3D"#888888"><br>
<br>
-- <br>
Live well,<br>
~wren<br>
<br>
______________________________<u></u>_________________<br>
Haskell-Cafe mailing list<br>
<a href=3D"mailto:Haskell-Cafe at haskell.org" target=3D"_blank">Haskell-Cafe@=
haskell.org</a><br>
<a href=3D"http://www.haskell.org/mailman/listinfo/haskell-cafe" target=3D"=
_blank">http://www.haskell.org/<u></u>mailman/listinfo/haskell-cafe</a><br>
</font></span></blockquote></div><br></div>
--20cf3079bab6ce333504c834fe77--
More information about the Haskell-Cafe
mailing list