Lyndon Maydwell maydwell at gmail.com
Mon Jun 6 22:42:21 CEST 2011

```Thanks Maciej!

An additional Just was required in the refactored version of f:

f (Rotate    x   : Rotate    x'    : cs) = Just \$ g (Rotate (x+x') : g cs)

This is much cleaner than what I was doing.

On Tue, Jun 7, 2011 at 4:14 AM, Maciej Piechotka <uzytkownik2 at gmail.com> wrote:
> On Tue, 2011-06-07 at 04:09 +0800, Lyndon Maydwell wrote:
>> (missed including cafe)
>>
>> f :: [Modification] -> Maybe [Modification]
>> and
>> f _ = Just \$ f ...
>> are incompatible
>>
>
>
>
> f ... = let cs' = (Rotate (x+x') : fromMaybe cs (f cs))
>        in fromMaybe cs (f cs)
>
> Or refactoring it:
>
> g l = fromMaybe l (f l)
>
> f (Rotate    x   : Rotate    x'    : cs) = g (Rotate (x+x') : g cs)
>
> Regards
>
>> I managed to get the behaviour I'm after with the use of Either, but
>> this really is messy:
>>
>>
>> -- Sets of changes
>> o (Modifier (Changes [])  i) = Just \$ i
>> o (Modifier (Changes [c]) i) = Just \$ Modifier c i
>> o (Modifier (Changes l)   i) = g (f (Left l))
>>   where
>>     g (Right l) = Just \$ Modifier (Changes l) i
>>     g (Left  l) = Nothing
>>
>>     f (Left  (Scale     x y : Scale     x' y' : l)) =
>>         f \$ Right \$ Scale     (x*x') (y*y') : h (f \$ Left l)
>>     f (Left  (Translate x y : Translate x' y' : l)) =
>>         f \$ Right \$ Translate (x+x') (y+y') : h (f \$ Left l)
>>     f (Left  (Rotate    x   : Rotate    x'    : l)) =
>>         f \$ Right \$ Rotate    (x+x')        : h (f \$ Left l)
>>     f x = x
>>
>>     h (Left  l) = l
>>     h (Right l) = l
>>
>>
>> On Tue, Jun 7, 2011 at 3:11 AM, Maciej Marcin Piechotka
>> <uzytkownik2 at gmail.com> wrote:
>> > On Mon, 2011-06-06 at 23:38 +0800, Lyndon Maydwell wrote:
>> >> I'm writing an optimisation routine using Uniplate. Unfortunately, a
>> >> sub-function I'm writing is getting caught in an infinite loop because
>> >> it doesn't return Nothing when there are no optimisations left.
>> >>
>> >> I'd like a way to move the last Just into f, but this makes recursion
>> >> very messy. I was wondering if there was a nice way to use something
>> >> like the Monad or Applicative instance to help here.
>> >>
>> >> -- Sets of changes
>> >> o (Modifier (Changes [])  i) = Just \$ i
>> >> o (Modifier (Changes [c]) i) = Just \$ Modifier c i
>> >> o (Modifier (Changes l)   i) = Just \$ Modifier (Changes (f l)) i
>> >>   where
>> >>     f (Scale     x y : Scale     x' y' : l) = f \$ Scale     (x*x') (y*y') : f l
>> >>     f (Translate x y : Translate x' y' : l) = f \$ Translate (x+x') (y+y') : f l
>> >>     f (Rotate    x   : Rotate    x'    : l) = f \$ Rotate    (x+x')        : f l
>> >>     f l = l
>> >>
>> >>
>> >> Any ideas?
>> >
>> > Something like:
>> >
>> > ...
>> > f (Rotate    x   : Rotate    x'    : l)
>> >    = Just \$ f (Rotate (x+x') : fromMaybe l (f l))
>> > f l = Nothing -- As far as I understend
>> >
>> > Regards
>> >
>> > _______________________________________________