[Haskell-cafe] Template Haskell - substitution in pattern in a
lambda
Patrick Caldon
patc at pessce.net
Sun Jan 3 21:30:50 EST 2010
I'm trying to write some template haskell which will transform:
$(buildCP 0) into \(SimpleM d1 d2 d3) (SimpleM _ _ _) -> (SimpleM d1 d2 d3)
$(buildCP 1) into \(SimpleM _ d2 d3) (SimpleM d1 _ _) -> (SimpleM d1 d2 d3)
$(buildCP 1) into \(SimpleM d1 _ d3) (SimpleM _ d2 _) -> (SimpleM d1 d2 d3)
and so on.
Ultimately I want to generalize this to more variables.
I can't seem to get anything to substitute for the pattern variables in
a lambda. Is there a straightforward way of doing this?
Below is what I've been playing with to try to make this work.
Thanks,
Patrick.
---
module THTest where
import Language.Haskell.TH
import qualified Data.Bits
type Policy = Int
data Management = SimpleM Policy Policy Policy
deriving Show
-- Compiles - but no substitution for the "aX" and "bX" variables
buildCP :: Int -> ExpQ
buildCP k =
[|\(SimpleM a1 a2 a3) (SimpleM b1 b2 b3) -> (SimpleM $e1 $e2 $e3) |]
where (e1,a1,b1) = bitToExprs 0 k
(e2,a2,b2) = bitToExprs 1 k
(e3,a3,b3) = bitToExprs 2 k
-- Won't compile:
buildCP2 :: Int -> ExpQ
buildCP2 k =
[|\(SimpleM $a1 $a2 $a3) (SimpleM $b1 $b2 $b3) -> (SimpleM $e1 $e2
$e3) |]
where (e1,a1,b1) = bitToExprs 0 k
(e2,a2,b2) = bitToExprs 1 k
(e3,a3,b3) = bitToExprs 2 k
cp1 0 = \(SimpleM d1 d2 d3) (SimpleM _ _ _) -> (SimpleM d1 d2 d3)
{-
-- idea is to use in calls like this:
cp0 0 = $(buildCP 0) -- should be \(SimpleM d1 d2 d3) (SimpleM _ _ _) ->
(SimpleM d1 d2 d3)
cp0 1 = $(buildCP 1)
-}
-- There is also a template haskell [p| ... |] syntax, but not yet
implemented ...
bitToExprs:: Int -> Int -> (ExpQ,PatQ,PatQ)
bitToExprs n k =
if Data.Bits.testBit (k::Int) (n::Int)
then (e,v1,v2)
else (e,v2,v1)
where v1 = return WildP
v2 = return $ VarP (mkName name)
e = return $ VarE (mkName name)
name = "d" ++ (show $ n + 1)
{-
-- ulitmate goal is something like this with 10ish d variables:
--
cp0 0 (SimpleM d1 d2 d3 m1) (SimpleM _ _ _ m2) = (SimpleM d1 d2 d3 (me1
m1 m2))
cp0 1 (SimpleM d1 d2 _ m1) (SimpleM _ _ d3 m2) = (SimpleM d1 d2 d3 (me2
m1 m2))
cp0 2 (SimpleM d1 _ d3 m1) (SimpleM _ d2 _ m2) = (SimpleM d1 d2 d3 (me1
m1 m2))
cp0 3 (SimpleM d1 _ _ m1) (SimpleM _ d2 d3 m2) = (SimpleM d1 d2 d3 (me2
m1 m2))
cp0 4 (SimpleM _ d2 d3 m1) (SimpleM d1 _ _ m2) = (SimpleM d1 d2 d3 (me1
m1 m2))
cp0 5 (SimpleM _ d2 _ m1) (SimpleM d1 _ d3 m2) = (SimpleM d1 d2 d3 (me2
m1 m2))
cp0 6 (SimpleM _ _ d3 m1) (SimpleM d1 d2 _ m2) = (SimpleM d1 d2 d3 (me1
m1 m2))
cp0 7 (SimpleM _ _ _ m1) (SimpleM d1 d2 d3 m2) = (SimpleM d1 d2 d3 (me2
m1 m2))
cp0 _ _ _ = (trace "cp0 error" undefined)
-}
More information about the Haskell-Cafe
mailing list