[Haskell-cafe] [weird stuff] The Dodgy Diagonal
Conor McBride
ctm at cs.nott.ac.uk
Sat Jul 14 07:06:30 EDT 2007
Scary words warning: Polynomial, Functor, Bifunctor, unsafeCoerce#
Folks
A peculiar query for folks who know more about the internals of Haskell
compilers than I do. I attach the full code with all the bits and
pieces,
but let me pull out the essentials in order to state the problem.
I've been mucking around with polynomial types in one parameter
> newtype Id x = Id x -- element
> newtype K1 a x = K1 a -- constant
> data ((Sum1 p q)) x = L1 (p x) | R1 (q x) -- choice
> data ((Prod1 p q)) x = P1 (p x) (q x) -- pairing
all of which give unremarkable instances of Functor
< class Functor p where
< fmap :: (s -> t) -> p s -> p t
> instance Functor Id
> instance Functor (K1 a)
> instance (Functor p, Functor q) => Functor (Sum1 p q)
> instance (Functor p, Functor q) => Functor (Prod1 p q)
I've also been mucking around with polynomial types in two parameters
> newtype Fst x y = Fst x
> newtype Snd x y = Snd y
> newtype K2 a x y = K2 a
> data ((Sum2 p q)) x y = L2 (p x y) | R2 (q x y)
> data ((Prod2 p q)) x y = P2 (p x y) (q x y)
which give unremarkable bifunctors, doing two maps at once
> class Bifunctor p where
> bimap :: (s1 -> t1) -> (s2 -> t2) -> p s1 s2 -> p t1 t2
> instance Bifunctor Fst where
> bimap f g (Fst x) = Fst (f x)
>
> instance Bifunctor Snd where
> bimap f g (Snd y) = Snd (g y)
>
> instance Bifunctor (K2 a)
> instance (Bifunctor p, Bifunctor q) =>
> Bifunctor (Sum2 p q)
> instance (Bifunctor p, Bifunctor q) =>
> Bifunctor (Prod2 p q)
Now, I'm interested in collapsing the diagonal. What? Er, this:
> class (Bifunctor b, Functor f) => Diag b f | b -> f where
> diag :: b x x -> f x
> gaid :: f x -> b x x
If the two parameters to a bifunctor are instantiated with the same
thing, we should be able to exchange with the functorial representation.
I'll just do one way.
> instance Diag Fst Id where
> diag (Fst x) = Id x
> instance Diag Snd Id where
> diag (Snd x) = Id x
> instance Diag (K2 a) (K1 a) where
> diag (K2 a) = K1 a
> instance (Diag pb pf, Diag qb qf) => Diag (Sum2 pb qb) (Sum1 pf
qf) where
> diag (L2 p) = L1 (diag p)
> diag (R2 q) = R1 (diag q)
> instance (Diag pb pf, Diag qb qf) => Diag (Prod2 pb qb) (Prod1 pf
qf) where
> diag (P2 p q) = P1 (diag p) (diag q)
That looks like a whole lot of doing very little. So, can I (in
practice, in
this or that compiler) get away with...
> dodgy :: Diag b f => b x x -> f x
> dodgy = unsafeCoerce#
> ygdod :: Diag b f => f x -> b x x
> ygdod = unsafeCoerce#
...dodgy for diag and ygdod for giad?
Minimal nontrivial experiments in ghc give grounds for cautious
optimism,
but I'd be delighted to hear from better informed sources.
Cheers
Conor
------------------
-------------- next part --------------
A non-text attachment was scrubbed...
Name: Diag.lhs
Type: application/octet-stream
Size: 3083 bytes
Desc: not available
Url : http://www.haskell.org/pipermail/haskell-cafe/attachments/20070714/b204114c/Diag.obj
More information about the Haskell-Cafe
mailing list