[Haskell-cafe] Importing Data.Char speeds up ghc around 70%
Daniel Fischer
daniel.is.fischer at web.de
Sat Dec 22 14:38:01 EST 2007
Am Samstag, 22. Dezember 2007 19:00 schrieb Joost Behrends:
> Hi,
>
> while still working on optimizing (naively programmed) primefactors i
> watched a very strange behavior of ghc. The last version below takes 2.34
> minutes on my system for computing 2^61+1 = 3*768614,336404,564651.
> Importing Data.Char without anywhere using it reduces this time to 1.34
> minute - a remarkable speed up. System is WindowsXP on 2.2GHZ Intel, 512MB
> Ram.
>
> I give the complete code here - hopefully all tabs are (4) blanks. Can this
> be reproduced ? I compile just with --make -O2.
I can't reproduce it, both run in 130s here (SuSE 8.2, 1200MHz Duron).
However, it's running over 30 minutes now trying to factorise 2^88+1 without
any sign of approaching success, which suggests your code has a bug (the
factorization is [257,229153,119782433,43872038849], so even a naive approach
shouldn't take much longer than a minute).
Cheers,
Daniel
>
> module Main
> where
>
> import IO
> import System.Exit
> import Data.Char
>
> main = do
> hSetBuffering stdin LineBuffering
> putStrLn "Number to decompose ?"
> s <- getLine
> if s == [] then
> exitWith ExitSuccess
> else do
> putStrLn (show$primefactors$read s)
> main
>
> data DivIter = DivIter {dividend :: Integer,
> divisor :: Integer,
> bound :: Integer,
> result :: [Integer]}
>
> intsqrt m = floor (sqrt $ fromInteger m)
>
> primefactors :: Integer -> [Integer]
> primefactors n | n<2 = []
>
> | even n = o2 ++ (primefactors o1)
> | otherwise = if z/=1 then result res ++[z] else result res
>
> where
> res = divisions (DivIter {dividend = o1,
> divisor = 3,
> bound = intsqrt(o1),
> result = o2})
> z = dividend res -- is 1 sometimes
> (o1,o2) = twosect (n,[])
>
> twosect :: (Integer,[Integer]) -> (Integer,[Integer])
> twosect m |odd (fst m) = m
>
> |even (fst m) = twosect (div (fst m) 2, snd m ++ [2])
>
> found :: DivIter -> DivIter
> found x = x {dividend = xidiv,
> bound = intsqrt(xidiv),
> result = result x ++ [divisor x]}
> where xidiv = (dividend x) `div` (divisor x)
>
> d2 :: DivIter -> DivIter
> d2 x |dividend x `mod` divisor x > 0 = x { divisor = divisor x + 2}
>
> |otherwise = found x
>
> d4 :: DivIter -> DivIter
> d4 x |dividend x `mod` divisor x > 0 = x { divisor = divisor x + 4}
>
> |otherwise = found x
>
> d6 :: DivIter -> DivIter
> d6 x |dividend x `mod` divisor x > 0 = x { divisor = divisor x + 6}
>
> |otherwise = found x
>
> divisions :: DivIter -> DivIter
> divisions y |or[divisor y == 3,
> divisor y == 5] = divisions (d2 y)
>
> |divisor y <= bound y = divisions (d6$d2$d6$d4$d2$d4$d2$d4 y)
> |otherwise = y
>
> _______________________________________________
> Haskell-Cafe mailing list
> Haskell-Cafe at haskell.org
> http://www.haskell.org/mailman/listinfo/haskell-cafe
More information about the Haskell-Cafe
mailing list