[Haskell-cafe] How odd...

Lennart Augustsson lennart at augustsson.net
Sat Aug 4 13:44:58 EDT 2007


Infinity is a very slippery concept, you can't compute with it like that.
You can compute various limits, though.
So, e.g., for a > 0
  lim x*a -> Inf
  x->Inf
and
  lim x*0 -> 0
  x->Inf
But
  lim x*(1/x) -> 1
  x->Inf
And that last one would be "Inf*0" in the limit.  In fact, you can make
Inf*0 any number you like.  So NaN is the sensible.

  -- Lennart

On 8/4/07, Andrew Coppin <andrewcoppin at btinternet.com> wrote:
>
>
> >
> >> Um... why would infinity * 0 be NaN? That doesn't make sense...
> > Infinity times anything is Infinity.  Zero times anything is zero.  So
> > what should Infinity * zero be?  There isn't one right answer.  In
> > this case the "morally correct" answer is zero, but in other contexts
> > it might be Infinity or even some finite number other than zero.
>
> I don't follow.
>
> Infinity times any positive quantity gives positive infinity.
> Infinity times any negative quantity gives negative infinity.
> Infinity times zero gives zero.
>
> What's the problem?
>
> > Consider 0.0 / 0.0, which also evaluates to NaN.
>
> Division by zero is *definitely* undefined. (The equation 0 * k = v has
> no solutions.)
>
> _______________________________________________
> Haskell-Cafe mailing list
> Haskell-Cafe at haskell.org
> http://www.haskell.org/mailman/listinfo/haskell-cafe
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://www.haskell.org/pipermail/haskell-cafe/attachments/20070804/500b544b/attachment.htm


More information about the Haskell-Cafe mailing list