fixed point
Harris, Andrew
Andrew.Harris at jhuapl.edu
Mon Oct 27 09:16:22 EST 2003
>
> Notice that, (\x -> x) a reduces to a, so (\a b c -> a b c) x (y-z) z
> reduces to x (y-z) z. You can therefore simplify your
> function quite a
> bit.
> wierdFunc x y z = if y-z > z then x (y-z) z else (\d e -> d) (y-z) z
> and you can still apply that lambda abstraction (beta-reduce)
> wierdFunc x y z = if y-z > z then x (y-z) z else y-z
> None of these (except, of course, fix and remainder) are recursive. A
> recursive function is just one that calls itself. For wierdFunc to be
> recursive, the identifier wierdFunc would have to occur in the
> right-hand side of it's definition.
>
Thanks for your help. For some reason I didn't think "x (y - z) z" and "y -
z" had the same type. I am still trying to understand how they do. Also,
had a feeling the fix function was related to the "Y" combinator; it seems
they're the same thing!
http://en.wikipedia.org/wiki/Y_combinator
thanks again,
-andrew
More information about the Haskell-Cafe
mailing list