derivative (S f g) ?
Conal Elliott
conal@microsoft.com
Tue, 21 May 2002 10:54:32 -0700
This is a multi-part message in MIME format.
--------------InterScan_NT_MIME_Boundary
Content-Type: multipart/alternative;
boundary="----_=_NextPart_001_01C200F0.8FD414C6"
------_=_NextPart_001_01C200F0.8FD414C6
Content-Type: text/plain;
charset="US-ASCII"
Content-Transfer-Encoding: quoted-printable
This isn't really a Haskell question, but I'm hoping a fellow Haskeller
might have some helpful pointers.
=20
Has anyone seen a generalization of the chain rule for derivatives that
applies to applications of the S combinator? The conventional chain
rule applies to the more restricted composition combinator:
=20
D (f . g) =3D (D f . g) * D g
=20
Where D is the differentiation higher-order function, "*" is multiply
lifted pointwise to functions (\ a b x -> a x * b x), and "." is
function composition.
=20
Thanks,
=20
- Conal
=20
------_=_NextPart_001_01C200F0.8FD414C6
Content-Type: text/html;
charset="US-ASCII"
Content-Transfer-Encoding: quoted-printable
<html>
<head>
<meta http-equiv=3DContent-Type content=3D"text/html; =
charset=3Dus-ascii">
<meta name=3DGenerator content=3D"Microsoft Word 10 (filtered)">
<style>
<!--
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman";}
a:link, span.MsoHyperlink
{color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{color:purple;
text-decoration:underline;}
span.EmailStyle17
{font-family:Arial;
color:windowtext;}
@page Section1
{size:8.5in 11.0in;
margin:1.0in 1.25in 1.0in 1.25in;}
div.Section1
{page:Section1;}
-->
</style>
</head>
<body lang=3DEN-US link=3Dblue vlink=3Dpurple>
<div class=3DSection1>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>This isn’t really a Haskell question, but =
I’m
hoping a fellow Haskeller might have some helpful =
pointers.</span></font></p>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'> </span></font></p>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>Has anyone seen a generalization of the chain rule =
for
derivatives that applies to applications of the S combinator? The
conventional chain rule applies to the more restricted composition =
combinator:</span></font></p>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'> </span></font></p>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'> D (f . g) =3D (D f . g) * D =
g</span></font></p>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'> </span></font></p>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>Where D is the differentiation higher-order function, =
“*”
is multiply lifted pointwise to functions (\ a b x -> a x * b x), and =
“.”
is function composition.</span></font></p>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'> </span></font></p>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>Thanks,</span></font></p>
<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'> </span></font></p>
<p class=3DMsoNormal><font size=3D3 face=3D"Times New Roman"><span =
style=3D'font-size:
12.0pt'> - Conal</span></font></p>
<p class=3DMsoNormal><font size=3D3 face=3D"Times New Roman"><span =
style=3D'font-size:
12.0pt'> </span></font></p>
</div>
</body>
</html>
=00
------_=_NextPart_001_01C200F0.8FD414C6--
--------------InterScan_NT_MIME_Boundary--