derivative (S f g) ?

Conal Elliott conal@microsoft.com
Tue, 21 May 2002 10:54:32 -0700


This is a multi-part message in MIME format.

--------------InterScan_NT_MIME_Boundary
Content-Type: multipart/alternative;
	boundary="----_=_NextPart_001_01C200F0.8FD414C6"

------_=_NextPart_001_01C200F0.8FD414C6
Content-Type: text/plain;
	charset="US-ASCII"
Content-Transfer-Encoding: quoted-printable

This isn't really a Haskell question, but I'm hoping a fellow Haskeller
might have some helpful pointers.

=20

Has anyone seen a generalization of the chain rule for derivatives that
applies to applications of the S combinator?  The conventional chain
rule applies to the more restricted composition combinator:

=20

  D (f . g) =3D (D f . g) * D g

=20

Where D is the differentiation higher-order function, "*" is multiply
lifted pointwise to functions (\ a b x -> a x * b x), and "." is
function composition.

=20

Thanks,

=20

    - Conal

=20


------_=_NextPart_001_01C200F0.8FD414C6
Content-Type: text/html;
	charset="US-ASCII"
Content-Transfer-Encoding: quoted-printable

<html>

<head>
<meta http-equiv=3DContent-Type content=3D"text/html; =
charset=3Dus-ascii">
<meta name=3DGenerator content=3D"Microsoft Word 10 (filtered)">

<style>
<!--
 /* Style Definitions */
 p.MsoNormal, li.MsoNormal, div.MsoNormal
	{margin:0in;
	margin-bottom:.0001pt;
	font-size:12.0pt;
	font-family:"Times New Roman";}
a:link, span.MsoHyperlink
	{color:blue;
	text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
	{color:purple;
	text-decoration:underline;}
span.EmailStyle17
	{font-family:Arial;
	color:windowtext;}
@page Section1
	{size:8.5in 11.0in;
	margin:1.0in 1.25in 1.0in 1.25in;}
div.Section1
	{page:Section1;}
-->
</style>

</head>

<body lang=3DEN-US link=3Dblue vlink=3Dpurple>

<div class=3DSection1>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>This isn&#8217;t really a Haskell question, but =
I&#8217;m
hoping a fellow Haskeller might have some helpful =
pointers.</span></font></p>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>&nbsp;</span></font></p>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>Has anyone seen a generalization of the chain rule =
for
derivatives that applies to applications of the S combinator?&nbsp; The
conventional chain rule applies to the more restricted composition =
combinator:</span></font></p>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>&nbsp;</span></font></p>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>&nbsp; D (f . g) =3D (D f . g) * D =
g</span></font></p>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>&nbsp;</span></font></p>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>Where D is the differentiation higher-order function, =
&#8220;*&#8221;
is multiply lifted pointwise to functions (\ a b x -&gt; a x * b x), and =
&#8220;.&#8221;
is function composition.</span></font></p>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>&nbsp;</span></font></p>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>Thanks,</span></font></p>

<p class=3DMsoNormal><font size=3D2 face=3DArial><span =
style=3D'font-size:10.0pt;
font-family:Arial'>&nbsp;</span></font></p>

<p class=3DMsoNormal><font size=3D3 face=3D"Times New Roman"><span =
style=3D'font-size:
12.0pt'>&nbsp;&nbsp;&nbsp; - Conal</span></font></p>

<p class=3DMsoNormal><font size=3D3 face=3D"Times New Roman"><span =
style=3D'font-size:
12.0pt'>&nbsp;</span></font></p>

</div>

</body>

</html>
=00
------_=_NextPart_001_01C200F0.8FD414C6--

--------------InterScan_NT_MIME_Boundary--