[GHC] #11070: Type-level arithmetic of sized-types has weaker inference power than in 7.8
GHC
ghc-devs at haskell.org
Sun Nov 8 10:53:00 UTC 2015
#11070: Type-level arithmetic of sized-types has weaker inference power than in 7.8
-------------------------------------+-------------------------------------
Reporter: cactus | Owner:
Type: bug | Status: new
Priority: normal | Milestone:
Component: Compiler | Version: 7.10.2
Keywords: | Operating System: Unknown/Multiple
Architecture: | Type of failure: GHC rejects
Unknown/Multiple | valid program
Test Case: | Blocked By:
Blocking: | Related Tickets:
Differential Rev(s): | Wiki Page:
-------------------------------------+-------------------------------------
Given the following definitions (just a copy of the relevant bits from
sized-types 0.3.5.1, to keep this example self-contained):
{{{
-- Copied from sized-types 0.3.5.1
data X0 = X0
data N1 = N1
data X0_ a = X0_ Integer
data X1_ a = X1_ Integer
type X1 = X1_ X0
type X2 = X0_ (X1_ X0)
class Size ix
instance Size X0
instance Size a => Size (X1_ a)
instance Size a => Size (X0_ a)
type family APP0 a
type instance APP0 X0 = X0
type instance APP0 N1 = X0_ N1
type instance APP0 (X1_ a) = X0_ (X1_ a)
type instance APP0 (X0_ a) = X0_ (X0_ a)
type family APP1 a
type instance APP1 X0 = X1_ X0
type instance APP1 N1 = N1
type instance APP1 (X1_ a) = X1_ (X1_ a)
type instance APP1 (X0_ a) = X1_ (X0_ a)
type family SUCC a
type instance SUCC X0 = X1_ X0
type instance SUCC N1 = X0
type instance SUCC (X1_ a) = APP0 (SUCC a)
type instance SUCC (X0_ a) = APP1 a
type family ADD a b
type instance ADD a X0 = a
type instance ADD X0 a = a
type instance ADD X0 N1 = N1
type instance ADD N1 N1 = APP0 N1
type instance ADD N1 (X1_ b) = APP0 b
type instance ADD N1 (X0_ b) = APP1 (ADD N1 b)
type instance ADD (X1_ a) N1 = APP0 a
type instance ADD (X0_ a) N1 = APP1 (ADD a N1)
type instance ADD (X1_ a) (X1_ b) = APP0 (SUCC (ADD a b))
type instance ADD (X1_ a) (X0_ b) = APP1 (ADD a b)
type instance ADD (X0_ a) (X1_ b) = APP1 (ADD a b)
type instance ADD (X0_ a) (X0_ b) = APP0 (ADD a b)
type family NOT a
type instance NOT X0 = N1
type instance NOT N1 = X0
type instance NOT (X1_ a) = APP0 (NOT a)
type instance NOT (X0_ a) = APP1 (NOT a)
type SUB a b = ADD a (SUCC (NOT b))
}}}
The following module typechecks with GHC 7.8.3:
{{{
data B w = B
(&*) :: (Size n, Size n', Size (ADD n' n), n ~ SUB (ADD n' n) n', n' ~ SUB
(ADD n' n) n)
=> [(a, B n)] -> [(b, B n')] -> [((a, b), B (ADD n' n))]
mks &* args = undefined
foo :: [((), B X1)]
foo = [((), B)]
bar :: [(((), ()), B X2)]
bar = [((), B)] &* foo
}}}
However, it fails with GHC 7.10.2, with
{{{
/tmp/GHCBug.hs:70:7:
Couldn't match type ‘ADD X1 n0’ with ‘X0_ (X1_ X0)’
The type variable ‘n0’ is ambiguous
Expected type: [(((), ()), B X2)]
Actual type: [(((), ()), B (ADD X1 n0))]
In the expression: [((), B)] &* foo
In an equation for ‘bar’: bar = [((), B)] &* foo
/tmp/GHCBug.hs:70:17:
Occurs check: cannot construct the infinite type:
n0 ~ ADD (ADD X1 n0) N1
The type variable ‘n0’ is ambiguous
Expected type: SUB (ADD X1 n0) X1
Actual type: n0
In the expression: [((), B)] &* foo
In an equation for ‘bar’: bar = [((), B)] &* foo
Failed, modules loaded: none.
}}}
The workaround/solution is to change the definition of `bar`:
{{{
bar :: [(((), ()), B X2)]
bar = [((), B :: B X1)] &* foo
}}}
This second version typechecks with GHC 7.10.2.
--
Ticket URL: <http://ghc.haskell.org/trac/ghc/ticket/11070>
GHC <http://www.haskell.org/ghc/>
The Glasgow Haskell Compiler
More information about the ghc-tickets
mailing list