[Git][ghc/ghc][wip/ncg-simd] 2 commits: Add test for C calls & SIMD vectors

sheaf (@sheaf) gitlab at gitlab.haskell.org
Fri Aug 9 16:07:13 UTC 2024



sheaf pushed to branch wip/ncg-simd at Glasgow Haskell Compiler / GHC


Commits:
a1eade8e by sheaf at 2024-08-09T17:39:18+02:00
Add test for C calls & SIMD vectors

- - - - -
2e8eb652 by sheaf at 2024-08-09T18:06:55+02:00
Fix C calls with SIMD vectors

This commit fixes the code generation for C calls, to take into account
the calling convention.

This is particularly tricky on Windows, where all vectors are expected
to be passed by reference. See Note [The Windows X64 C calling convention]
in GHC.CmmToAsm.X86.CodeGen.

- - - - -


7 changed files:

- compiler/GHC/CmmToAsm/X86/CodeGen.hs
- compiler/GHC/CmmToAsm/X86/Instr.hs
- compiler/GHC/Utils/Monad.hs
- testsuite/tests/simd/should_run/all.T
- + testsuite/tests/simd/should_run/simd013.hs
- + testsuite/tests/simd/should_run/simd013.stdout
- + testsuite/tests/simd/should_run/simd013C.c


Changes:

=====================================
compiler/GHC/CmmToAsm/X86/CodeGen.hs
=====================================
@@ -1,6 +1,8 @@
 {-# LANGUAGE LambdaCase #-}
 {-# LANGUAGE MultiWayIf #-}
 {-# LANGUAGE GADTs #-}
+{-# LANGUAGE RecursiveDo #-}
+{-# LANGUAGE TupleSections #-}
 {-# LANGUAGE NondecreasingIndentation #-}
 
 {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
@@ -73,10 +75,12 @@ import GHC.Types.Tickish ( GenTickish(..) )
 import GHC.Types.SrcLoc  ( srcSpanFile, srcSpanStartLine, srcSpanStartCol )
 
 -- The rest:
+import GHC.Data.Maybe ( expectJust )
 import GHC.Types.ForeignCall ( CCallConv(..) )
 import GHC.Data.OrdList
 import GHC.Utils.Outputable
 import GHC.Utils.Constants (debugIsOn)
+import GHC.Utils.Monad ( foldMapM )
 import GHC.Utils.Panic
 import GHC.Data.FastString
 import GHC.Utils.Misc
@@ -844,12 +848,12 @@ iselExpr64ParallelBin op e1 e2 = do
 -- targetted for any particular type like Int8, Int32 etc
 data VectorArithInstns = VA_Add | VA_Sub | VA_Mul | VA_Div | VA_Min | VA_Max
 
-getRegister :: CmmExpr -> NatM Register
+getRegister :: HasDebugCallStack => CmmExpr -> NatM Register
 getRegister e = do platform <- getPlatform
                    is32Bit <- is32BitPlatform
                    getRegister' platform is32Bit e
 
-getRegister' :: Platform -> Bool -> CmmExpr -> NatM Register
+getRegister' :: HasDebugCallStack => Platform -> Bool -> CmmExpr -> NatM Register
 
 getRegister' platform is32Bit (CmmReg reg)
   = case reg of
@@ -2306,7 +2310,7 @@ getNonClobberedOperand (CmmLit lit) =
     return (OpAddr addr, code)
   else do
     platform <- getPlatform
-    if is32BitLit platform lit && not (isFloatType (cmmLitType platform lit))
+    if is32BitLit platform lit && isIntFormat (cmmTypeFormat (cmmLitType platform lit))
     then return (OpImm (litToImm lit), nilOL)
     else getNonClobberedOperand_generic (CmmLit lit)
 
@@ -2363,13 +2367,13 @@ getOperand (CmmLit lit) = do
     else do
 
   platform <- getPlatform
-  if is32BitLit platform lit && not (isFloatType (cmmLitType platform lit))
+  if is32BitLit platform lit && (isIntFormat $ cmmTypeFormat (cmmLitType platform lit))
     then return (OpImm (litToImm lit), nilOL)
     else getOperand_generic (CmmLit lit)
 
 getOperand (CmmLoad mem ty _) = do
   is32Bit <- is32BitPlatform
-  if not (isFloatType ty) && (if is32Bit then not (isWord64 ty) else True)
+  if isIntFormat (cmmTypeFormat ty) && (if is32Bit then not (isWord64 ty) else True)
      then do
        Amode src mem_code <- getAmode mem
        return (OpAddr src, mem_code)
@@ -2400,7 +2404,7 @@ addAlignmentCheck align reg =
   where
     check :: Format -> Reg -> InstrBlock
     check fmt reg =
-        assert (not $ isFloatFormat fmt) $
+        assert (isIntFormat fmt) $
         toOL [ TEST fmt (OpImm $ ImmInt $ align-1) (OpReg reg)
              , JXX_GBL NE $ ImmCLbl mkBadAlignmentLabel
              ]
@@ -2445,7 +2449,7 @@ isSuitableFloatingPointLit _ = False
 getRegOrMem :: CmmExpr -> NatM (Operand, InstrBlock)
 getRegOrMem e@(CmmLoad mem ty _) = do
   is32Bit <- is32BitPlatform
-  if not (isFloatType ty) && (if is32Bit then not (isWord64 ty) else True)
+  if isIntFormat (cmmTypeFormat ty) && (if is32Bit then not (isWord64 ty) else True)
      then do
        Amode src mem_code <- getAmode mem
        return (OpAddr src, mem_code)
@@ -3319,7 +3323,7 @@ genCCall32 addr (ForeignConvention _ argHints _ _) dest_regs args = do
                                      DELTA (delta-8)]
                     )
 
-              | isFloatType arg_ty = do
+              | isFloatType arg_ty || isVecType arg_ty = do
                 (reg, code) <- getSomeReg arg
                 delta <- getDeltaNat
                 setDeltaNat (delta-size)
@@ -3329,11 +3333,10 @@ genCCall32 addr (ForeignConvention _ argHints _ _) dest_regs args = do
                                       let addr = AddrBaseIndex (EABaseReg esp)
                                                                 EAIndexNone
                                                                 (ImmInt 0)
-                                          format = floatFormat (typeWidth arg_ty)
+                                          format = cmmTypeFormat arg_ty
                                       in
 
-                                      -- assume SSE2
-                                       MOV format (OpReg reg) (OpAddr addr)
+                                       movInstr config format (OpReg reg) (OpAddr addr)
 
                                      ]
                                )
@@ -3402,6 +3405,8 @@ genCCall32 addr (ForeignConvention _ argHints _ _) dest_regs args = do
             -- assign the results, if necessary
             assign_code []     = nilOL
             assign_code [dest]
+              | isVecType ty
+              = sorry "X86_32 C call: no support for returning SIMD vectors"
               | isFloatType ty =
                   -- we assume SSE2
                   let tmp_amode = AddrBaseIndex (EABaseReg esp)
@@ -3448,36 +3453,41 @@ genCCall64 addr conv@(ForeignConvention _ argHints _ _) dest_regs args = do
     let prom_args = map (maybePromoteCArg platform W32) args_hints
 
     let load_args :: [CmmExpr]
-                  -> [RegFormat]         -- int regs avail for args
-                  -> [RegFormat]         -- FP regs avail for args
+                  -> [Reg]         -- int regs avail for args
+                  -> [Reg]         -- FP regs avail for args
+                  -> [RegFormat]   -- used int regs
+                  -> [RegFormat]   -- used FP regs
                   -> InstrBlock    -- code computing args
                   -> InstrBlock    -- code assigning args to ABI regs
                   -> NatM ([CmmExpr],[RegFormat],[RegFormat],InstrBlock,InstrBlock)
         -- no more regs to use
-        load_args args [] [] code acode     =
-            return (args, [], [], code, acode)
+        load_args args [] [] used_aregs used_fregs code acode     =
+            return (args, used_aregs, used_fregs, code, acode)
 
         -- no more args to push
-        load_args [] aregs fregs code acode =
-            return ([], aregs, fregs, code, acode)
-
-        load_args (arg : rest) aregs fregs code acode
-            | isFloatType arg_rep = case fregs of
-                 []     -> push_this_arg
-                 (RegFormat r _fmt:rs) -> do
-                    (code',acode') <- reg_this_arg r
-                    load_args rest aregs rs code' acode'
-            | otherwise           = case aregs of
-                 []     -> push_this_arg
-                 (RegFormat r _fmt:rs) -> do
-                    (code',acode') <- reg_this_arg r
-                    load_args rest rs fregs code' acode'
+        load_args [] _aregs _fregs used_aregs used_fregs code acode =
+            return ([], used_aregs, used_fregs, code, acode)
+
+        load_args (arg : rest) aregs fregs used_aregs used_fregs code acode
+            | isFloatType arg_rep || isVecType arg_rep
+            = case fregs of
+                []     -> push_this_arg
+                (r:rs) -> do
+                   (code',acode') <- reg_this_arg r
+                   load_args rest aregs rs used_aregs (RegFormat r fmt:used_fregs) code' acode'
+            | otherwise
+            = case aregs of
+                []     -> push_this_arg
+                (r:rs) -> do
+                   (code',acode') <- reg_this_arg r
+                   load_args rest rs fregs (RegFormat r fmt:used_aregs) used_fregs code' acode'
             where
+              fmt = cmmTypeFormat arg_rep
 
               -- put arg into the list of stack pushed args
               push_this_arg = do
                  (args',ars,frs,code',acode')
-                     <- load_args rest aregs fregs code acode
+                     <- load_args rest aregs fregs used_aregs used_fregs code acode
                  return (arg:args', ars, frs, code', acode')
 
               -- pass the arg into the given register
@@ -3509,86 +3519,65 @@ genCCall64 addr conv@(ForeignConvention _ argHints _ _) dest_regs args = do
               arg_fmt = cmmTypeFormat arg_rep
 
         load_args_win :: [CmmExpr]
-                      -> [RegFormat]        -- used int regs
-                      -> [RegFormat]        -- used FP regs
+                      -> [RegFormat] -- used int regs
+                      -> [RegFormat] -- used FP regs
                       -> [(Reg, Reg)] -- (int, FP) regs avail for args
                       -> InstrBlock
-                      -> NatM ([CmmExpr],[RegFormat],[RegFormat],InstrBlock,InstrBlock)
+                      -> NatM ([(CmmExpr, Maybe Reg)],[RegFormat],[RegFormat],InstrBlock,InstrBlock)
         load_args_win args usedInt usedFP [] code
-            = return (args, usedInt, usedFP, code, nilOL)
+            = return (map (, Nothing) args, usedInt, usedFP, code, nilOL)
             -- no more regs to use
         load_args_win [] usedInt usedFP _ code
             = return ([], usedInt, usedFP, code, nilOL)
             -- no more args to push
         load_args_win (arg : rest) usedInt usedFP
                       ((ireg, freg) : regs) code
-            | isFloatType arg_rep = do
-                 arg_code <- getAnyReg arg
-                 load_args_win rest (RegFormat ireg II64: usedInt) (RegFormat freg FF64 : usedFP) regs
-                               (code `appOL`
-                                arg_code freg `snocOL`
-                                -- If we are calling a varargs function
-                                -- then we need to define ireg as well
-                                -- as freg
-                                MOVD FF64 (OpReg freg) (OpReg ireg))
-            | otherwise = do
-                 arg_code <- getAnyReg arg
+            | isFloatType arg_rep
+            = do arg_code <- getAnyReg arg
+                 load_args_win rest
+                   (RegFormat ireg II64: usedInt) (RegFormat freg FF64 : usedFP) regs
+                   (code `appOL`
+                    arg_code freg `snocOL`
+                    -- If we are calling a varargs function
+                    -- then we need to define ireg as well
+                    -- as freg
+                    MOVD FF64 (OpReg freg) (OpReg ireg))
+            | isVecType arg_rep
+            -- Vectors are passed by reference.
+            -- See Note [The Windows X64 C calling convention].
+            = do (args', usedInt', usedFP', code', acode') <-
+                   load_args_win rest (RegFormat ireg II64 : usedInt) usedFP regs code
+                 return $
+                    -- return the argument so that we put it on the stack
+                    ((arg, Just ireg):args', usedInt', usedFP', code', acode')
+            | otherwise
+            = do arg_code <- getAnyReg arg
                  load_args_win rest (RegFormat ireg II64: usedInt) usedFP regs
-                               (code `appOL` arg_code ireg)
+                    (code `appOL` arg_code ireg)
             where
               arg_rep = cmmExprType platform arg
 
-        arg_size = 8 -- always, at the mo
-
-        push_args [] code = return code
-        push_args (arg:rest) code
-           | isFloatType arg_rep = do
-             (arg_reg, arg_code) <- getSomeReg arg
-             delta <- getDeltaNat
-             setDeltaNat (delta-arg_size)
-             let fmt = floatFormat width
-                 code' = code `appOL` arg_code `appOL` toOL [
-                            SUB (intFormat (wordWidth platform)) (OpImm (ImmInt arg_size)) (OpReg rsp),
-                            DELTA (delta-arg_size),
-                            MOV fmt (OpReg arg_reg) (OpAddr (spRel platform 0))]
-             push_args rest code'
-
-           | otherwise = do
-             -- Arguments can be smaller than 64-bit, but we still use @PUSH
-             -- II64@ - the usual calling conventions expect integers to be
-             -- 8-byte aligned.
-             massert (width <= W64)
-             (arg_op, arg_code) <- getOperand arg
-             delta <- getDeltaNat
-             setDeltaNat (delta-arg_size)
-             let code' = code `appOL` arg_code `appOL` toOL [
-                                    PUSH II64 arg_op,
-                                    DELTA (delta-arg_size)]
-             push_args rest code'
-            where
-              arg_rep = cmmExprType platform arg
-              width = typeWidth arg_rep
+        expr_size arg = max (widthInBytes (wordWidth platform)) $ widthInBytes (typeWidth $ cmmExprType platform arg)
 
         leaveStackSpace n = do
              delta <- getDeltaNat
-             setDeltaNat (delta - n * arg_size)
+             setDeltaNat (delta - n * 8)
              return $ toOL [
                          SUB II64 (OpImm (ImmInt (n * platformWordSizeInBytes platform))) (OpReg rsp),
-                         DELTA (delta - n * arg_size)]
+                         DELTA (delta - n * 8)]
+              -- NB: the shadow store is always 8 * 4 = 32 bytes large,
+              -- i.e. the cumulative size of rcx, rdx, r8, r9 (see 'allArgRegs').
 
     (stack_args, int_regs_used, fp_regs_used, load_args_code, assign_args_code)
          <-
         if platformOS platform == OSMinGW32
         then load_args_win prom_args [] [] (allArgRegs platform) nilOL
         else do
-           let intArgRegs = map (\r -> RegFormat r II64) $ allIntArgRegs platform
-               fpArgRegs = map (\r -> RegFormat r FF64) $ allFPArgRegs platform
-           (stack_args, aregs, fregs, load_args_code, assign_args_code)
-               <- load_args prom_args intArgRegs fpArgRegs nilOL nilOL
-           let used_regs rs as = dropTail (length rs) as
-               fregs_used      = used_regs fregs fpArgRegs
-               aregs_used      = used_regs aregs intArgRegs
-           return (stack_args, aregs_used, fregs_used, load_args_code
+           let intArgRegs = allIntArgRegs platform
+               fpArgRegs = allFPArgRegs platform
+           (stack_args, aregs_used, fregs_used, load_args_code, assign_args_code)
+               <- load_args prom_args intArgRegs fpArgRegs [] [] nilOL nilOL
+           return (map (, Nothing) stack_args, aregs_used, fregs_used, load_args_code
                                                       , assign_args_code)
 
     let
@@ -3597,11 +3586,29 @@ genCCall64 addr conv@(ForeignConvention _ argHints _ _) dest_regs args = do
         arg_regs = [RegFormat eax wordFmt] ++ arg_regs_used
                 -- for annotating the call instruction with
         sse_regs = length fp_regs_used
-        arg_stack_slots = if platformOS platform == OSMinGW32
-                          then length stack_args + length (allArgRegs platform)
-                          else length stack_args
-        tot_arg_size = arg_size * arg_stack_slots
 
+        stack_arg_size
+          | platformOS platform == OSMinGW32
+          = sum
+              [ 8 -- each argument takes up 8 bytes,
+                  -- because vector arguments are passed by reference
+              | (_arg, mb_irep) <- stack_args
+              , isNothing mb_irep
+                  -- don't count an argument passed in a register
+              ]
+          | otherwise
+          = sum (map (expr_size . fst) stack_args)
+
+        tot_arg_size
+          | platformOS platform == OSMinGW32
+          = 8 * length (allArgRegs platform) -- shadow store
+          + stack_arg_size
+          + sum [ expr_size vec_arg
+                | ( vec_arg, _) <- stack_args
+                , isVecType (cmmExprType platform vec_arg)
+                ]
+          | otherwise
+          = stack_arg_size
 
     -- Align stack to 16n for calls, assuming a starting stack
     -- alignment of 16n - word_size on procedure entry. Which we
@@ -3616,13 +3623,104 @@ genCCall64 addr conv@(ForeignConvention _ argHints _ _) dest_regs args = do
                 return (tot_arg_size + word_size, toOL [
                                 SUB II64 (OpImm (ImmInt word_size)) (OpReg rsp),
                                 DELTA (delta - word_size) ])
+    let
+        -- push one argument to the stack
+        push_arg :: CmmExpr -> NatM (OrdList Instr)
+        push_arg arg
+           | isFloatType arg_rep || isVecType arg_rep = do
+             (arg_reg, arg_code) <- getSomeReg arg
+             delta <- getDeltaNat
+             setDeltaNat (delta-arg_size)
+             let fmt = cmmTypeFormat arg_rep
+             return $ arg_code `appOL` toOL
+                   [ SUB (intFormat (wordWidth platform)) (OpImm (ImmInt arg_size)) (OpReg rsp)
+                   , DELTA (delta-arg_size)
+                   , movInstr config fmt (OpReg arg_reg) (OpAddr (spRel platform 0)) ]
+
+           | otherwise = do
+             -- Arguments can be smaller than 64-bit, but we still use @PUSH
+             -- II64@ - the usual calling conventions expect integers to be
+             -- 8-byte aligned.
+             massert (width <= W64)
+             (arg_op, arg_code) <- getOperand arg
+             delta <- getDeltaNat
+             setDeltaNat (delta-arg_size)
+             return $
+               arg_code `appOL` toOL [
+                        PUSH II64 arg_op,
+                        DELTA (delta-arg_size)]
+            where
+              arg_size = expr_size arg
+              arg_rep = cmmExprType platform arg
+              width = typeWidth arg_rep
+
+        push_arg_win :: ((CmmExpr, Maybe Reg), Maybe Int) -> NatM (OrdList Instr, OrdList Instr)
+        push_arg_win ((arg, mb_ireg), mb_off)
+          | isVecType arg_rep
+          , let off = expectJust "push_arg_win vector offset" mb_off
+          -- Pass references for each of the vector arguments.
+          -- See Note [The Windows X64 C calling convention].
+          = case mb_ireg of
+              -- Pass the reference in a register
+              Just ireg -> return (unitOL $ LEA II64 (OpAddr (spRel platform off)) (OpReg ireg), nilOL)
+              -- Pass the reference on the stack
+              Nothing ->
+                do tmp <- getNewRegNat II64
+                   delta <- getDeltaNat
+                   setDeltaNat (delta-arg_ref_size)
+                   let push_code = toOL
+                         [ SUB (intFormat (wordWidth platform)) (OpImm (ImmInt arg_ref_size)) (OpReg rsp)
+                         , DELTA (delta-arg_ref_size)
+                         , LEA II64 (OpAddr (spRel platform off)) (OpReg tmp)
+                         , MOV II64 (OpReg tmp) (OpAddr (spRel platform 0)) ]
+                   return (nilOL, push_code)
+          | otherwise
+          = do { push_code <- push_arg arg; return (nilOL, push_code) }
+            where
+              arg_ref_size = 8 -- passing a reference to the argument
+              arg_rep = cmmExprType platform arg
+
+        push_args_direct :: [CmmExpr] -> NatM (OrdList Instr)
+        push_args_direct = foldMapM push_arg
+
+        push_args :: [(CmmExpr, Maybe Reg)] -> NatM (OrdList Instr, OrdList Instr)
+        push_args rev_args
+          | platformOS platform == OSMinGW32
+          = do { let is_vec = isVecFormat . cmmTypeFormat . cmmExprType platform
+                     vecs = map fst $ filter (is_vec . fst) rev_args
+
+                  -- Slightly tricky code: compute the stack offset to the
+                  -- vector data for this argument.
+                  --
+                  -- If you're confused, Note [The Windows X64 C calling convention]
+                  -- contains a helpful diagram.
+               ; let vec_offs = reverse $ go stack_arg_size $ reverse rev_args
+                       where go _ [] = []
+                             go off ((arg, mb_reg):args)
+                               | is_vec arg
+                               = Just off : go (expr_size arg + off') args
+                               | otherwise
+                               = Nothing : go off' args
+                               where
+                                -- this little computation below accounts for
+                                -- registers in the shadow space
+                                off' = case mb_reg of
+                                  Just {} -> off
+                                  _       -> off - 8
+
+               ; push_vectors <- push_args_direct vecs
+               ; (load_regs, push_args) <- foldMapM push_arg_win (zip rev_args vec_offs)
+               ; return (load_regs, push_vectors `appOL` push_args) }
+          | otherwise
+          = do { push_code <- push_args_direct (map fst rev_args)
+               ; return (nilOL, push_code) }
 
     -- push the stack args, right to left
-    push_code <- push_args (reverse stack_args) nilOL
+    (load_vecrefs_win, push_code) <- push_args (reverse stack_args)
     -- On Win64, we also have to leave stack space for the arguments
     -- that we are passing in registers
     lss_code <- if platformOS platform == OSMinGW32
-                then leaveStackSpace (length (allArgRegs platform))
+                then leaveStackSpace $ length (allArgRegs platform)
                 else return nilOL
     delta <- getDeltaNat
 
@@ -3643,7 +3741,11 @@ genCCall64 addr conv@(ForeignConvention _ argHints _ _) dest_regs args = do
         -- It's not safe to omit this assignment, even if the number
         -- of SSE2 regs in use is zero.  If %al is larger than 8
         -- on entry to a varargs function, seg faults ensue.
-        assign_eax n = unitOL (MOV II32 (OpImm (ImmInt n)) (OpReg eax))
+        assign_eax n
+          | platformOS platform == OSMinGW32
+          = nilOL
+          | otherwise
+          = unitOL (MOV II32 (OpImm (ImmInt n)) (OpReg eax))
 
     let call = callinsns `appOL`
                toOL (
@@ -3671,12 +3773,108 @@ genCCall64 addr conv@(ForeignConvention _ argHints _ _) dest_regs args = do
     return (adjust_rsp          `appOL`
             push_code           `appOL`
             load_args_code      `appOL`
+            load_vecrefs_win    `appOL`
             assign_args_code    `appOL`
             lss_code            `appOL`
             assign_eax sse_regs `appOL`
             call                `appOL`
             assign_code dest_regs)
 
+{- Note [The Windows X64 C calling convention]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Here are a few facts about the Windows X64 C calling convention that
+are important:
+
+  - the first four arguments smaller than 8-byte are passed in registers,
+    with integer arguments being passed in %rcx, %rdx, %r8, %r9
+    and floating-point arguments in %xmm0, %xmm1, %xmm2, %xmm3.
+
+    For variadic functions, it is additionally expected that floating point
+    values are copied to the corresponding integer register, e.g. the data in
+    xmm2 should also be copied to r8.
+    There is no requirement about setting %al like there is for the
+    System V AMD64 ABI.
+
+  - subsequent arguments are passed on the stack,
+
+  - any argument larger than 8 bytes must be passed by reference.
+
+This motivates our handling of vector values. Suppose we have a function call
+with many arguments, several of them being vectors. We proceed as follows:
+
+  - push all the vectors to the stack first,
+  - then push the arguments:
+      - for non-vectors, proceed as usual
+      - for vectors, push the address of the vector data we pushed above,
+  - then assign the registers:
+      - for non-vectors, proceed as usual,
+      - for vectors, store the address in a general-purpose register, as opposed
+        to storing the data in an xmm register.
+
+For a concrete example, suppose we have a call of the form:
+
+  f x1 x2 x3 x4 x5 x6 x7
+
+in which:
+
+  x2, x3 and x7 are 16 byte vectors
+  x5 is a 32 byte vector
+  the other arguments are all 8 byte wide
+
+Now, x1, x2, x3, x4 will get passed in registers, except that we pass
+x2 and x3 by reference, because they are vectors. We proceed as follows:
+
+  - push the vectors to the stack: x7, x5, x3, x2 (in that order)
+  - push the stack arguments in order: addr(x7), x6, addr(x5)
+  - load the remaining arguments into registers: x4, addr(x3), addr(x2), x1
+
+The tricky part is to get the right offsets for the addresses of the vector
+data. The following visualisation will hopefully clear things up:
+
+                          ┌──┐
+                          │  │
+                 x7  ───  │  │
+                          │  │
+                          │  │
+                          └──┘
+                          ┌──┐
+                          │  │
+                          │  │
+                          │  │
+                 x5  ───  │  │
+                          │  │
+                          │  │
+                          │  │
+                          │  │
+                          └──┘
+                          ┌──┐
+                          │  │
+                 x3  ───  │  │
+                          │  │
+                          │  │
+                          └──┘
+                          ┌──┐
+                          │  │
+                 x2  ───  │  │
+                          │  │
+                          │  │
+                          └──┘
+                          ┌──┐
+            addr(x7) ───  │  │
+                          └──┘  ─── from here: x7 is +72
+                          ┌──┐      note: 72 = 56 + 32 - 2 * 8
+                 x6  ───  │  │         56 = offset of x5, but relative to two arguments down
+                          └──┘         32 = width x5
+                          ┌──┐         remove 8 twice because we are two arguments further up
+            addr(x5) ───  │  │
+                          └──┘  ─── from here: x2 is +24, x3 is +40, x5 is +56
+                          ┌──┐      note: 24 is stack_arg_size
+                          │  │          = 8 * length [ x5, x6, x7 ]
+        shadow space ───  │  │
+                          │  │
+                          │  │
+                          └──┘  ─── Sp
+-}
 
 maybePromoteCArg :: Platform -> Width -> (CmmExpr, ForeignHint) -> CmmExpr
 maybePromoteCArg platform wto (arg, hint)


=====================================
compiler/GHC/CmmToAsm/X86/Instr.hs
=====================================
@@ -892,7 +892,7 @@ mkLoadInstr config (RegFormat reg fmt) delta slot =
 
 -- | A move instruction for moving the entire contents of an operand
 -- at the given 'Format'.
-movInstr :: NCGConfig -> Format -> (Operand -> Operand -> Instr)
+movInstr :: HasDebugCallStack => NCGConfig -> Format -> (Operand -> Operand -> Instr)
 movInstr config fmt =
   case fmt of
     VecFormat _ sFmt ->
@@ -914,17 +914,38 @@ movInstr config fmt =
         _ -> sorry $ "Unhandled SIMD vector width: " ++ show (8 * bytes) ++ " bits"
     _ -> MOV fmt
   where
+    plat    = ncgPlatform config
     bytes   = formatInBytes fmt
     avx     = ncgAvxEnabled config
     avx2    = ncgAvx2Enabled config
     avx512f = ncgAvx512fEnabled config
     avx_move sFmt =
       if isFloatScalarFormat sFmt
-      then VMOVU   fmt
+      then \ op1 op2 ->
+              if
+                | OpReg r1 <- op1
+                , OpReg r2 <- op2
+                , targetClassOfReg plat r1 /= targetClassOfReg plat r2
+                -> pprPanic "movInstr: VMOVU between incompatible registers"
+                     ( vcat [ text "fmt:" <+> ppr fmt
+                            , text "r1:" <+> ppr r1
+                            , text "r2:" <+> ppr r2 ] )
+                | otherwise
+                -> VMOVU   fmt op1 op2
       else VMOVDQU fmt
     sse_move sFmt =
       if isFloatScalarFormat sFmt
-      then MOVU   fmt
+      then \ op1 op2 ->
+              if
+                | OpReg r1 <- op1
+                , OpReg r2 <- op2
+                , targetClassOfReg plat r1 /= targetClassOfReg plat r2
+                -> pprPanic "movInstr: MOVU between incompatible registers"
+                     ( vcat [ text "fmt:" <+> ppr fmt
+                            , text "r1:" <+> ppr r1
+                            , text "r2:" <+> ppr r2 ] )
+                | otherwise
+                -> MOVU   fmt op1 op2
       else MOVDQU fmt
     -- NB: we are using {V}MOVU and not {V}MOVA, because we have no guarantees
     -- about the stack being sufficiently aligned (even for even numbered stack slots).
@@ -989,12 +1010,7 @@ mkRegRegMoveInstr
     -> Reg
     -> Instr
 mkRegRegMoveInstr config fmt src dst =
-  assertPpr (targetClassOfReg platform src == targetClassOfReg platform dst)
-    (vcat [ text "mkRegRegMoveInstr: incompatible register classes"
-          , text "fmt:" <+> ppr fmt
-          , text "src:" <+> ppr src
-          , text "dst:" <+> ppr dst ]) $
-    movInstr config fmt' (OpReg src) (OpReg dst)
+  movInstr config fmt' (OpReg src) (OpReg dst)
       -- Move the platform word size, at a minimum
   where
     platform = ncgPlatform config


=====================================
compiler/GHC/Utils/Monad.hs
=====================================
@@ -14,6 +14,7 @@ module GHC.Utils.Monad
         , zipWith3MNE
         , mapAndUnzipM, mapAndUnzip3M, mapAndUnzip4M, mapAndUnzip5M
         , mapAccumLM
+        , foldMapM
         , mapSndM
         , concatMapM
         , mapMaybeM
@@ -208,6 +209,12 @@ mapMaybeM :: Applicative m => (a -> m (Maybe b)) -> [a] -> m [b]
 mapMaybeM f = foldr g (pure [])
   where g a = liftA2 (maybe id (:)) (f a)
 
+-- | Like 'foldMap', but with an applicative or monadic function.
+foldMapM :: forall b m f a. (Monoid b, Applicative m, Foldable f) => (a -> m b) -> f a -> m b
+foldMapM f = foldr (\ a b -> mappend <$> f a <*> b) (pure mempty)
+{-# INLINE foldMapM #-}
+  -- INLINE to benefit from foldr fusion
+
 -- | Monadic version of 'any', aborts the computation at the first @True@ value
 anyM :: (Monad m, Foldable f) => (a -> m Bool) -> f a -> m Bool
 anyM f = foldr (orM . f) (pure False)


=====================================
testsuite/tests/simd/should_run/all.T
=====================================
@@ -40,6 +40,12 @@ test('simd011', [ unless(have_cpu_feature('fma'), skip)
                 , extra_hc_opts('-mfma')
                 ], compile_and_run, [''])
 test('simd012', [], compile_and_run, [''])
+test('simd013',
+     [ req_c
+     , unless(arch('x86_64'), skip) # because the C file uses Intel intrinsics
+     ],
+     compile_and_run, ['simd013C.c'])
+
 
 test('T25062_V16', [], compile_and_run, [''])
 test('T25062_V32', [ unless(have_cpu_feature('avx2'), skip)


=====================================
testsuite/tests/simd/should_run/simd013.hs
=====================================
@@ -0,0 +1,32 @@
+{-# LANGUAGE MagicHash #-}
+{-# LANGUAGE UnboxedTuples #-}
+{-# LANGUAGE UnliftedFFITypes #-}
+-- test C calls with SIMD vectors
+
+module Main where
+
+import GHC.Exts
+import GHC.Prim
+
+foreign import ccall "sub"
+  sub :: DoubleX2# -> DoubleX2# -> DoubleX2#
+
+foreign import ccall "add6"
+  add6 :: DoubleX2# -> DoubleX2# -> DoubleX2# -> DoubleX2# -> DoubleX2# -> DoubleX2# -> DoubleX2#
+
+main :: IO ()
+main = do
+  let x1, x2 :: DoubleX2#
+      x1 = packDoubleX2# (# 9.9##, 99.99## #)
+      x2 = packDoubleX2# (# 1.1##, 11.11## #)
+      y1, y2, y3, y4, y5, y6 :: DoubleX2#
+      !y1 = packDoubleX2# (#      1.5##,           2.5## #)
+      !y2 = packDoubleX2# (#     10.25##,         20.25## #)
+      !y3 = packDoubleX2# (#    100.125##,       200.125## #)
+      !y4 = packDoubleX2# (#   1000.0625##,     2000.0625## #)
+      !y5 = packDoubleX2# (#   0000.03125##,   20000.03125## #)
+      !y6 = packDoubleX2# (# 100000.015625##, 200000.015625## #)
+      !(# a, b #) = unpackDoubleX2# ( sub x1 x2 )
+      !(# c, d #) = unpackDoubleX2# ( add6 y1 y2 y3 y4 y5 y6 )
+  print ( D# a, D# b )
+  print ( D# c, D# d )


=====================================
testsuite/tests/simd/should_run/simd013.stdout
=====================================
@@ -0,0 +1,2 @@
+(8.8,88.88)
+(101111.984375,222222.984375)


=====================================
testsuite/tests/simd/should_run/simd013C.c
=====================================
@@ -0,0 +1,12 @@
+
+#include <xmmintrin.h>
+
+__m128d sub(__m128d x, __m128d y)
+{
+  return _mm_sub_pd(x,y);
+}
+
+__m128d add6(__m128d x1, __m128d x2, __m128d x3, __m128d x4, __m128d x5, __m128d x6)
+{
+  return _mm_add_pd(x1,_mm_add_pd(x2,_mm_add_pd(x3,_mm_add_pd(x4,_mm_add_pd(x5,x6)))));
+}



View it on GitLab: https://gitlab.haskell.org/ghc/ghc/-/compare/ac0602ad249d5a7076cecc6522fd5de9f37dd3e1...2e8eb652a48f36ced030285d7abfe13feae833b6

-- 
View it on GitLab: https://gitlab.haskell.org/ghc/ghc/-/compare/ac0602ad249d5a7076cecc6522fd5de9f37dd3e1...2e8eb652a48f36ced030285d7abfe13feae833b6
You're receiving this email because of your account on gitlab.haskell.org.


-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.haskell.org/pipermail/ghc-commits/attachments/20240809/66ed1f07/attachment-0001.html>


More information about the ghc-commits mailing list