<div dir="ltr"><br><br><div class="gmail_quote"><div dir="ltr">---------- Forwarded message ---------<br>From: <b class="gmail_sendername" dir="auto">Dannyu NDos</b> <span dir="ltr"><<a href="mailto:ndospark320@gmail.com">ndospark320@gmail.com</a>></span><br>Date: 2018년 9월 17일 (월) 오후 6:18<br>Subject: Re: Add fixity for (==) and (/=)<br>To:  <<a href="mailto:david.feuer@gmail.com">david.feuer@gmail.com</a>><br></div><br><br><div dir="ltr"><span style="font-family:monospace,monospace">Proof by truth table (F is False, T is True): <br></span><div><span style="font-family:monospace,monospace">p q r (p == q) (q == r) ((p == q) == r) (p == (q == r))<br></span></div><div><span style="font-family:monospace,monospace">F F F        T        T               F               F</span></div><div><span style="font-family:monospace,monospace">F F T        T        F               T               T<br></span></div><div><span style="font-family:monospace,monospace">F T F        F        F               T               T<br></span></div><div><span style="font-family:monospace,monospace">F T T        F        T               F               F<br></span></div><div><span style="font-family:monospace,monospace">T F F        F        T               T               T<br></span></div><div><span style="font-family:monospace,monospace">T F T        F        F               F               F<br></span></div><div><span style="font-family:monospace,monospace">T T F        T        F               F               F<br></span></div><div><span style="font-family:monospace,monospace">T T T        T        T               T               T<br></span></div><div><span style="font-family:monospace,monospace">That proves associativity of (==).</span></div><div><span style="font-family:monospace,monospace"><br></span></div><div><font face="monospace,monospace">Also note that p /= q ≡ not p == q. Proof:<br></font></div><div><font face="monospace,monospace">p q (p /= q) (not p) (not p == q)</font></div><div><font face="monospace,monospace">F F        F       T            F<br></font></div><div><font face="monospace,monospace">F T        T       T            T<br></font></div><div><font face="monospace,monospace">T F        T       F            T<br></font></div><div><font face="monospace,monospace">T T        F       F            F</font></div><div><font face="monospace,monospace">And by symmetry of (/=), p /= q ≡ p == not q.<br></font></div><div><font face="monospace,monospace"><br></font></div><div><font face="monospace,monospace">Then:</font></div><div><font face="monospace,monospace">(p /= q) /= r ≡ (not p == q) == not r ≡ not p == (q == not r) ≡ p /= (q /= r).</font></div><div><font face="monospace,monospace">Hence (/=) is associative.<br></font></div><div><font face="monospace,monospace"><br></font></div><div><font face="monospace,monospace">Q.E.D.<br></font></div></div>
</div></div>