<div dir="auto">`These` is not my own invention. It's in the `these` package.</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sat, Jan 9, 2021, 5:41 PM Olaf Klinke <<a href="mailto:olf@aatal-apotheke.de">olf@aatal-apotheke.de</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">On Sat, 2021-01-09 at 22:26 +0100, MigMit wrote:<br>
> Actually, it's pretty easy to construct a type `P x y`, so that Maybe<br>
> (P x y) ~ (Maybe x, Maybe y). It would be<br>
> <br>
> data OneOrBoth x y = Left' x | Right' y | Both x y<br>
> <br>
> The isomorphism is, I think, obvious<br>
> <br>
> iso1 :: Maybe (OneOrBoth x y) -> (Maybe x, Maybe y)<br>
> iso1 Nothing = (Nothing, Nothing)<br>
> iso1 (Just (Left' x)) = (Just x, Nothing)<br>
> iso1 (Just (Right' y)) = (Nothing, Just y)<br>
> iso1 (Just (Both x y)) = (Just x, Just y)<br>
> <br>
> iso2 :: (Maybe x, Maybe y) -> Maybe (OneOrBoth x y)<br>
> iso2 = -- left as an excersize for the reader<br>
> <br>
> And indeed, "OneOrBoth" would be a cartesian product functor in the<br>
> category of finite types (and maps).<br>
<br>
I stand corrected. Below is the full code, in case anyone wants to play<br>
with it. <br>
<br>
import Control.Arrow ((&&&))<br>
<br>
-- due to David Feuer<br>
data OneOrBoth x y = Left' x | Right' y | Both x y<br>
<br>
iso2 :: (Maybe x,Maybe y) -> Maybe (OneOrBoth x y)<br>
iso2 p = case p of<br>
    (Nothing,Nothing) -> Nothing<br>
    (Just x,Nothing) -> (Just (Left' x))<br>
    (Nothing,Just y) -> (Just (Right' y))<br>
    (Just x, Just y) -> (Just (Both x y))<br>
<br>
-- (OneOrBoth x) is a functor on Kleisli Maybe<br>
fmapKleisli :: (a -> Maybe b) -><br>
    OneOrBoth x a -> Maybe (OneOrBoth x b)<br>
fmapKleisli k (Left' x) = Just (Left' x)<br>
fmapKleisli k (Right' a) = fmap Right' (k a)<br>
fmapKleisli k (Both x a) = fmap (Both x) (k a)<br>
<br>
-- is OneOrBoth the cartesian product? Seems so:<br>
<br>
pairKleisli :: (a -> Maybe x) -> <br>
    (a -> Maybe y) -> <br>
    a -> Maybe (OneOrBoth x y)<br>
pairKleisli f g = iso2 . (f &&& g)<br>
<br>
fstMaybe :: OneOrBoth x y -> Maybe x<br>
fstMaybe (Left' x) = Just x<br>
fstMaybe (Both x _) = Just x<br>
fstMaybe (Right' _) = Nothing<br>
<br>
sndMaybe :: OneOrBoth x y -> Maybe y<br>
sndMaybe (Left' _) = Nothing<br>
sndMaybe (Right' y) = Just y<br>
sndMaybe (Both _ y) = Just y<br>
<br>
> <br>
> But it won't be cartesian closed. If it were, then for any finite X<br>
> and Y we should have<br>
> <br>
> Maybe (X^Y) ~<br>
> () -> Maybe (X^Y) ~<br>
> OneOrBoth () Y -> Maybe X ~<br>
> (() -> Maybe X, Y -> Maybe X, ((), Y) -> Maybe X) ~<br>
> (Maybe X, Y -> Maybe X, Y -> Maybe X)<br>
> <br>
> so<br>
> <br>
> X^Y ~ (X, Y -> Maybe X, Y -> Maybe X)<br>
> <br>
> But then<br>
> <br>
> Z -> Maybe (X^Y) ~<br>
> Z -> (Maybe X, Y -> Maybe X, Y -> Maybe X) ~<br>
> (Z -> Maybe X, (Z, Y) -> Maybe X, (Z, Y) -> Maybe X) ~<br>
> <br>
> and<br>
> <br>
> OneOrBoth Z Y -> Maybe X ~<br>
> (Z -> Maybe X, Y -> Maybe X, (Z, Y) -> Maybe X)<br>
> <br>
> We see that those aren't the same, they have a different number of<br>
> elements, so, no luck.<br>
<br>
Doesn't this chain of isomorphisms require () to be the terminal<br>
object, or did you take () as synonym for the terminal object in the<br>
category? For example, there are several functions of the type <br>
Bool -> Maybe ().<br>
So the terminal object in Kleisli Maybe would be Void, because Maybe<br>
Void ~ (). We'd need to make fields in OneOrBoth strict to have an<br>
isomorphism OneOrBoth Void a ~ a, just as the true categorical product<br>
in (->) is the strict pair. <br>
<br>
Olaf<br>
<br>
> <br>
> > On 9 Jan 2021, at 22:01, Olaf Klinke <<a href="mailto:olf@aatal-apotheke.de" target="_blank" rel="noreferrer">olf@aatal-apotheke.de</a>> wrote:<br>
> > <br>
> > > Hello!<br>
> > > <br>
> > > Finite maps from `"containers" Data.Map` look like they may form<br>
> > > a<br>
> > > Cartesian closed category. So it makes sense to ask if the rule<br>
> > > _α ⇸<br>
> > > (β ⇸ γ) ≡ ⟨α; β⟩ ⇸ γ ≡ ⟨β; α⟩ ⇸ γ ≡ β ⇸ (α ⇸ γ)_ that holds in<br>
> > > such<br>
> > > categories does hold for finite maps. Note that, a map being a<br>
> > > functor, this also may be seen as _f (g α) ≡ g (f α)_, which<br>
> > > would<br>
> > > work if maps were `Distributive` [1].<br>
> > > <br>
> > > It looks to me as though the following definition might work:<br>
> > > <br>
> > >    distribute = unionsWith union . mapWithKey (fmap . singleton)<br>
> > > <br>
> > > — And it works on simple examples. _(I checked the law<br>
> > > `distribute ∘<br>
> > > distribute ≡ id` — it appears to be the only law required.)_<br>
> > > <br>
> > > Is this definition correct? Is it already known and defined<br>
> > > elsewhere?<br>
> > > <br>
> > > [1]: <br>
> > > <a href="https://hackage.haskell.org/package/distributive-0.6.2.1/docs/Data-Distributive.html#t:Distributive" rel="noreferrer noreferrer" target="_blank">https://hackage.haskell.org/package/distributive-0.6.2.1/docs/Data-Distributive.html#t:Distributive</a><br>
> > <br>
> > Hi Ignat, <br>
> > <br>
> > TL;DR: No and no.<br>
> > <br>
> > The documentation says that every distributive functor is of the<br>
> > form<br>
> > (->) x for some x, and (Map a) is not like this. <br>
> > <br>
> > If Maps were a category, what is the identity morphism?<br>
> > <br>
> > Let's put the Ord constraint on the keys aside, Tom Smeding has<br>
> > already<br>
> > commented on that. Next, a Map is always finite, hence let's<br>
> > pretend<br>
> > that we are working inside the category of finite types and<br>
> > functions.<br>
> > Then the problems of missing identity and missing Ord go away. Once<br>
> > that all types are finite, we can assume an enumerator. That is,<br>
> > each<br>
> > type x has an operation<br>
> > enumerate :: [x]<br>
> > which we will use to construct the inverse of <br>
> > flip Map.lookup :: Map a b -> a -> Maybe b<br>
> > thereby showing that a Map is nothing but a memoized version of a<br>
> > Kleisli map (a -> Maybe b). Convince yourself that Map<br>
> > concatenation<br>
> > has the same semantics as Kleisli composition (<=<). Given a<br>
> > Kleisli<br>
> > map k between finite types, we build a Map as follows.<br>
> > \k -> Map.fromList (enumerate >>= (\a -> maybe [] (pure.(,) a) (k<br>
> > a)))<br>
> > <br>
> > With that knowledge, we can answer your question by deciding: Is<br>
> > the<br>
> > Kleisli category of the Maybe monad on finite types Cartesian<br>
> > closed?<br>
> > Short answer: It is not even Cartesian. <br>
> > There is an adjunction between the categories (->) and (Kleisli m)<br>
> > for<br>
> > every monad m, where<br>
> > * The left adjoint functor takes <br>
> >   types x to x,<br>
> >   functions f to return.f<br>
> > * The right adjoint functor takes <br>
> >   types x to m x,<br>
> >   Kleisli maps f to (=<<) f<br>
> > Right adjoint functors preserve all existing limits, which includes<br>
> > products. Therefore, if (Kleisli m) has binary products, then m<br>
> > must<br>
> > preserve them. So if P x y was the product of x and y in Kleisli m,<br>
> > then m (P x y) would be isomorphic to (m x,m y). This seems not to<br>
> > hold<br>
> > for m = Maybe: I can not imagine a type constructor P where<br>
> > Maybe (P x y) ~ (Maybe x,Maybe y).<br>
> > In particular, P can not be (,). The only sensible Kleisli<br>
> > projections<br>
> > from (x,y) would be fst' = return.fst and snd' = return.snd. Now<br>
> > think<br>
> > of two Kleisli maps f :: Bool -> Maybe x, g :: Bool -> Maybe y.<br>
> > Assume<br>
> > that f True = Just x for some x and g True = Nothing. In order to<br>
> > satisfy g True = (snd' <=< (f&&&g))True, the unique pair arrow<br>
> > (f&&&g)<br>
> > would need to map True to Nothing, but then f True = (fst' <=<<br>
> > (f&&&g))<br>
> > True can not hold. We conclude that (Kleisli Maybe) does not even<br>
> > have<br>
> > categorical products, so asking for Cartesian closure does not make<br>
> > sense. <br>
> > <br>
> > You might ask for a weaker property: For every type x, ((,) x) is a<br>
> > functor on (Kleisli Maybe). Indeed, the following works because<br>
> > ((,) x)<br>
> > is a polynomial functor. <br>
> > fmapKleisli :: Functor m => (a -> m b) -> (x,a) -> m (x,b)<br>
> > fmapKleisli f (x,a) = fmap ((,) x) (f a)<br>
> > Thus you may ask whether this functor has a right adjoint in the<br>
> > Kleisli category of Maybe. This would be a type constructor g with<br>
> > a<br>
> > natural isomorphism <br>
> > <br>
> > (x,a) -> Maybe b   ~   a -> Maybe (g b).<br>
> > <br>
> > The first thing that comes to mind is to try<br>
> > g b = x -> Maybe b and indeed djinn can provide two functions going<br>
> > back and forth that have the right type, but they do not establish<br>
> > an<br>
> > isomorphism. I doubt there is such a right adjoint g, but can not<br>
> > prove<br>
> > it at the moment. The idea is that a function (x,a) -> Maybe b may<br>
> > decide for Nothing depending on both x and a, and therefore the<br>
> > image<br>
> > function under the isomorphism must map every a to Just (g b) and<br>
> > delay<br>
> > the Nothing-decision to the g b. But for the reverse isomorphism<br>
> > you<br>
> > can have functions that do not always return Just (g b) and there<br>
> > is no<br>
> > preimage for these. <br>
> > <br>
> > Regards,<br>
> > Olaf<br>
> > <br>
> > <br>
> > <br>
> > _______________________________________________<br>
> > Haskell-Cafe mailing list<br>
> > To (un)subscribe, modify options or view archives go to:<br>
> > <a href="http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe" rel="noreferrer noreferrer" target="_blank">http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe</a><br>
> > Only members subscribed via the mailman list are allowed to post.<br>
<br>
</blockquote></div>