<div dir="ltr"><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">I'm happy to do this, I'll aim to put it up over the next few days!</div><div dir="ltr"><br><div>Bhavik Mehta</div></div></div></div><br><div class="gmail_quote"><div dir="ltr">On Mon, 10 Dec 2018 at 21:05, Olaf Klinke <<a href="mailto:olf@aatal-apotheke.de">olf@aatal-apotheke.de</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">I suggest to use Bhavik Mehta's page <a href="http://haskellformathematicians.wordpress.com" rel="noreferrer" target="_blank">haskellformathematicians.wordpress.com</a> if we can not find a more official place for it on <a href="http://haskell.org" rel="noreferrer" target="_blank">haskell.org</a>. At this point I'd like to thank Haskell Café member Sergiu Ivanov for inspiring me to start working on this. <br>
<br>
Does anyone know whether literate haskell can be used to generate html? <br>
<br>
Olaf<br>
<br>
> Am 10.12.2018 um 21:56 schrieb Siddharth Bhat <<a href="mailto:siddu.druid@gmail.com" target="_blank">siddu.druid@gmail.com</a>>:<br>
> <br>
> Agreed, having access to the book would be fantastic. :)<br>
> <br>
> On Tue, 11 Dec, 2018, 02:05 MigMit, <<a href="mailto:migmit@gmail.com" target="_blank">migmit@gmail.com</a>> wrote:<br>
> Same here!<br>
> <br>
> Az iPademről küldve<br>
> <br>
> 2018. dec. 10. dátummal, 21:32 időpontban Ara Adkins <<a href="mailto:me@ara.io" target="_blank">me@ara.io</a>> írta:<br>
> <br>
> > I’d love to take a read of the current stage of your book!<br>
> > <br>
> > _ara<br>
> > <br>
> >> On 10 Dec 2018, at 20:28, Olaf Klinke <<a href="mailto:olf@aatal-apotheke.de" target="_blank">olf@aatal-apotheke.de</a>> wrote:<br>
> >> <br>
> >> I highly recommend the So-called "Barbados notes" [1] of Martín Escardó. It is a systematic development of synthetic topology, with program fragments in Haskell. It is to my knowledge the first appearance of the so-called searchable sets and contains many other gems. <br>
> >> <br>
> >> I myself have been working on "Haskell for mathematicians", which shall become an entry point to the language for those with a background stronger in mathematics than in other programming languages. It is planned to touch on many areas of mathematics, not only topology. If anyone would like to have a look at the current stage, I'd be happy to share the source. <br>
> >> <br>
> >> Olaf<br>
> >> <br>
> >> [1] Synthetic Topology: of Data Types and Classical Spaces<br>
> >> <a href="https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/87/" rel="noreferrer" target="_blank">https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/87/</a><br>
> >> Pages 21-156, Open access<br>
> >> <br>
> >> [Disclaimer: Martín Escardó was one of my PhD supervisors.]<br>
> >> <br>
> >>> Am 10.12.2018 um 13:38 schrieb Siddharth Bhat <<a href="mailto:siddu.druid@gmail.com" target="_blank">siddu.druid@gmail.com</a>>:<br>
> >>> <br>
> >>> Hello,<br>
> >>> <br>
> >>> I was recently intrigued by this style of argument on haskell cafe:<br>
> >>> <br>
> >>> <br>
> >>> One can write a function <br>
> >>> Eq a => ((a -> Bool) -> a) -> [a]<br>
> >>> that enumerates the elements of the set. Because we have universal quantification, this list can not be infinite. Which makes sense, topologically: These so-called searchable sets are topologically compact, and the Eq constraint means the space is discrete. Compact subsets of a discrete space are finite. <br>
> >>> -------<br>
> >>> <br>
> >>> I've seen arguments like these "in the wild" during Scott topology construction and in some other weird places (hyperfunctions), but I've never seen a systematic treatment of this.<br>
> >>> <br>
> >>> <br>
> >>> I'd love to have a reference (papers / textbook preferred) to self learn this stuff!<br>
> >>> <br>
> >>> Thanks<br>
> >>> Siddharth<br>
> >>> -- <br>
> >>> Sending this from my phone, please excuse any typos!<br>
> >> <br>
> >> _______________________________________________<br>
> >> Haskell-Cafe mailing list<br>
> >> To (un)subscribe, modify options or view archives go to:<br>
> >> <a href="http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe" rel="noreferrer" target="_blank">http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe</a><br>
> >> Only members subscribed via the mailman list are allowed to post.<br>
> > _______________________________________________<br>
> > Haskell-Cafe mailing list<br>
> > To (un)subscribe, modify options or view archives go to:<br>
> > <a href="http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe" rel="noreferrer" target="_blank">http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe</a><br>
> > Only members subscribed via the mailman list are allowed to post.<br>
> _______________________________________________<br>
> Haskell-Cafe mailing list<br>
> To (un)subscribe, modify options or view archives go to:<br>
> <a href="http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe" rel="noreferrer" target="_blank">http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe</a><br>
> Only members subscribed via the mailman list are allowed to post.<br>
> -- <br>
> Sending this from my phone, please excuse any typos!<br>
<br>
_______________________________________________<br>
Haskell-Cafe mailing list<br>
To (un)subscribe, modify options or view archives go to:<br>
<a href="http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe" rel="noreferrer" target="_blank">http://mail.haskell.org/cgi-bin/mailman/listinfo/haskell-cafe</a><br>
Only members subscribed via the mailman list are allowed to post.</blockquote></div></div>