<html><head><meta http-equiv="Content-Type" content="text/html; charset=us-ascii"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><br class=""><div><br class=""><blockquote type="cite" class=""><div class="">On Oct 14, 2021, at 11:59 AM, Benjamin Redelings <<a href="mailto:benjamin.redelings@gmail.com" class="">benjamin.redelings@gmail.com</a>> wrote:</div><div class=""><div class=""><p class=""><br class="">
      I asked about this on Haskell-Cafe, and was recommended to ask
      here instead.  Any help is much appreciated!<br class=""></p></div></div></blockquote><div><br class=""></div><div>I saw your post over there, but haven't had time to respond.... but this retelling of the story makes it easier to respond, so I'll do so here.</div><br class=""><blockquote type="cite" class=""><div class=""><div class=""><p class="">* The PolyKinds paper was the most helpful thing I've found, but
      it doesn't cover type classes.  I'm also not sure that all
      implementers can follow algorithm descriptions that are laid out
      as inference rules, but maybe that could be fixed with a few hints
      about how to run the rules in reverse.  Also, in practice I think
      an implementer would want to follow GHC in specifying the initial
      kind of a data type as k1 -> k2 -> ... kn -> *.
      <br class=""></p></div></div></blockquote><div><br class=""></div><div>What is unique about type classes? It seems like you're worried about locally quantified type variables in method types, but (as far as kind inference is concerned) those are very much like existential variables in data constructors. So perhaps take the bit about existential variables from the PolyKinds part of that paper and combine it with the Haskell98 part.</div><div><br class=""></div><div>It's true that many implementors may find the notation in that paper to be a barrier, but you just have to read the rules clockwise, starting from the bottom left and ending on the bottom right. :)</div><blockquote type="cite" class=""><div class=""><div class=""><p class=""><br class=""></p><p class="">
      2. The following question (which I have maybe kind of answered
      now, but could use more advice on) is an example of what I am
      hoping such documentation would explain:
      <br class="">
      <br class="">
    </p>
    <blockquote type="cite" style="color: #007cff;" class="">Q: How do you handle
      type variables that are present in class methods, but are not type
      class parameters? If there are multiple types/classes in a single
      recursive group, the kind of such type variables might not be
      fully resolved until a later type-or-class is processed.  Is there
      a recommended approach?
      <br class="">
      <br class="">
      I can see two ways to proceed:
      <br class="">
      <br class="">
      i) First determine the kinds of all the data types, classes, and
      type synonyms.  Then perform a second pass over each type or class
      to determine the kinds of type variables (in class methods) that
      are not type class parameters.
      <br class=""></blockquote></div></div></blockquote><div><br class=""></div><div>This won't work.</div><div><br class=""></div><div>class C a where</div><div>  meth :: a b -> b Int</div><div><br class=""></div><div>You have to know the kind of local b to learn the kind of class-variable a. So you have to do it all at once.</div><br class=""><blockquote type="cite" class=""><div class=""><div class=""><blockquote type="cite" style="color: #007cff;" class="">
      <br class="">
      ii) Alternatively, record the kind of each type variable as it is
      encountered -- even though such kinds may contain unification kind
      variables.  After visiting all types-or-classes in the recursive
      group, replace any kind variables with their definition, or with a
      * if there is no definition.
      <br class="">
      <br class="">
      I've currently implement approach i), which requires doing kind
      inference on class methods twice.
      <br class="">
      <br class="">
    </blockquote>
    Further investigation revealed that GHC takes yet another approach
    (I think):
    <br class="">
    <br class="">
    iii) Represent kinds with modifiable variables.  Substitution can be
    implemented by modifying kind variables in-place.  This is (I think)
    called "zonking" in the GHC sources.
    <br class=""></div></div></blockquote><div><br class=""></div><div>I don't really see the difference between (ii) and (iii). Maybe (ii) records the kinds in a table somewhere, while (iii) records them "in" the kind variables themselves, but that's not so different, I think.</div><br class=""><blockquote type="cite" class=""><div class=""><div class="">
    <br class="">
    This solves a small mystery for me, since I previously thought that
    zonking was just replacing remaining kind variables with '*'.  And
    indeed this seems to be an example of zonking, but not what zonking
    is (I think).
    <br class=""></div></div></blockquote><div><br class=""></div><div>We can imagine that, instead of mutation, we build a substitution mapping unification variables to types (or kinds). This would be stored just as a simple mapping or dictionary structure. No mutation. As we learn about a unification variable, we just add to the mapping. If we did this, zonking would be the act of applying the substitution, replacing known unification variables with their values. It just so happens that GHC builds a mapping by using mutable cells in memory, but that's just an implementation detail: zonking is still just applying the substitution.</div><div><br class=""></div><div>Zonking does <i class="">not</i><span style="font-style: normal;" class=""> replace anything with *. Well, functions that have "zonk" in their name may do this. But it is not really logically part of the zonking operation. If you like, you can pretend that, after zonking a program, we take a separate pass replacing any yet-unfilled kind-level unification variables with *. Sometimes, this is called "zapping" in GHC, I believe.</span></div><br class=""><blockquote type="cite" class=""><div class=""><div class="">
    <br class="">
    Zonking looks painful to implement, but approach (i) might require
    multiple passes over types to update the kind of type variables,
    which might be worse...<br class=""></div></div></blockquote><div><br class=""></div><div>Zonking is a bit laborious to implement, but not painful. Laborious, because it requires a full pass over the AST. Not painful, because all it's trying to do is replace type/kind variables with substitutions: each individual piece of the puzzle is quite simple.</div></div><br class=""><div class="">I hope this is helpful!</div><div class="">Richard</div></body></html>